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Theory

This note is about physical quantities R1, . . . ,Rn . We like to measure them in a
consistent system of units, such as the SI system, in which the basic units are
the meter, kilogram, second, ampere, and kelvin (m, kg, s, A, K).1 As it will turn
out, the existence of consistent systems of measurement has nontrivial conse-
quences.

We shall assume the fundamental units of our system of units are F1, . . . ,Fm ,
so that we can write

R j = v(R j )[R j ] = ρ j [R j ] (1)

where ρ j = v(R j ) is a number, and [R j ] the units of R j . We can write [R j ] in terms
of the fundamental units as a product of powers:

[R j ] =
m∏

i=1
F

ai j

i ( j = 1, . . . , n), .

It is also important for the fundamental units to be independent in the sense that

m∏
i=1

F xi
i = 1 ⇒ x1 = ·· · = xm = 0. (2)

We shall not be satisfied with just one system of units: The whole crux of the
matter hinges on the fact that our choice of fundamental units is quite arbitrary.
So we might prefer a different system of units, in which the units Fi are replaced
by F̂i = x−1

i Fi . Here xi can be an arbitrary positive number for i = 1, . . . , m. We
can also write our quantities in the new system thus: R j = v̂(R j )[R j ]ˆ = ρ̂ j [R j ]ˆ .
We compute

R j = v(R j )F
a1 j

1 · · ·F am j
m = v(R j )x

a1 j

1 · · ·xam j
m︸ ︷︷ ︸

v̂(R j )

F̂
a1 j

1 · · · F̂ am j
m

1Perhaps we should also include the mole (mol) and candela (cd).
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from which we deduce the relation

ρ̂ j = ρ j

m∏
i=1

x
ai j

i . (3)

For example, if F1 = m and Fs = s, and R1 is a velocity, then [R1] = ms−1 = F1F−1
2 and

so a11 = 1, a21 = −1. With F̂1 = km and F̂2 = h, we find x1 = 1/1000 and x2 = 1/3600,
and so ρ̂1 = ρ1 · 3.6. Hence the example ρ1 = 10, ρ̂1 = 36 corresponds to the relation
10m/s = 36km/h.

We define the dimension matrix A of R1, . . . ,Rn by

A =

 a11 . . . a1n
...

. . .
...

am1 . . . amn

 .

It is now time to introduce the heroes of our drama: The dimensionless combi-
nations of the variables R j . A combination of these variables is merely a product

of powers: Rλ1
1 · · ·Rλn

n . We compute the units of this combination:

[Rλ1
1 · · ·Rλn

n ] =
m∏

i=1
F ai 1λ1+···+ai nλn

i . (4)

We call the combination dimensionless if this unit is 1; thus we arrive at the im-
portant result that this is equivalent to Aλ = 0, where we write λ = (λ1, . . . ,λn)T.
There is, therefore, a 1–1 correspondence between the null space N(A) and the set
of dimensionless combinations of the variables.

It may not come as a big surprise that dimensionless combinations have a
value independent of the system of units. We simply use (3) and compute:

n∏
j=1

ρ̂
λ j

j =
n∏

j=1

(
ρ j

m∏
i=1

x
ai j

i

)λ j =
( n∏

j=1
ρ
λ j

j

) n∏
j=1

m∏
i=1

x
ai jλ j

i

=
( n∏

j=1
ρ
λ j

j

) m∏
i=1

n∏
j=1

x
ai jλ j

i =
n∏

j=1
ρ
λ j

j

since Aλ= 0 implies
∏n

j=1 x
ai jλ j

i = 1.

Moreover, if you pick a basis for N(A) and take the corresponding dimension-
less combinations, π1, . . . ,πn−r (here r is the rank of A), then any dimensionless
combination can be written as a product πc1

1 · · ·πcn−r
n−r , where the exponents are

uniquely given (they are the coefficients of a member of N(A) in the chosen ba-
sis). We shall call this a maximal set of independent dimensionless combinations.
We can now state
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1 Theorem. (Buckingham’s pi-theorem)
Any physically meaningful relation Φ(R1, . . . ,Rn) = 0, with R j 6= 0, is equivalent to
a relation of the form Ψ(π1, . . . ,πn−r ) = 0 involving a maximal set of independent
dimensionless combinations.

The important fact to notice is that the new relation involves r fewer variables
than the original relation; this simplifies the theoretical analysis and experimen-
tal design alike.

We are not quite ready to prove this, however. Amongst other things, we must
give a precise meaning to the phrase “physically meaningful.”

First of all, Φ must also have units, and a value:

[Φ] =
m∏

i=1
F bi

i . (5)

The value is given by just inserting the values of R j in the formula for Φ and
computing:

v
(
Φ(R1, . . . ,Rn)

)=Φ
(
v(R1), . . . , v(Rn)

)
Furthermore, when we change to a different set of units, the value of Φ must
change according to a law similar to (3). Thus we get

Φ
(
v̂(R1), . . . , v̂(Rn)

)
= v̂

(
Φ(R1, . . . ,Rn)

)
= xb1

1 · · ·xbm
m v

(
Φ(R1, . . . ,Rn)

)
= xb1

1 · · ·xbm
m Φ

(
v(R1), . . . , v(Rn)

)
and therefore

Φ(xa11
1 · · ·xam1

m ρ1, . . . , xa1n
1 · · ·xamn

m ρn) = xb1
1 · · ·xbm

m Φ(ρ1, . . . ,ρn) (6)

for all real ρ1, . . . ,ρn and positive x1, . . . , xm . It is this relation we shall think of
when we say physically meaningful in Buckingham’s pi-theorem. We shall, how-
ever, have to insist on one more feature: Since Φ is supposed to combine the
quantities R j , the units of Φ must be the units of some combination of the vari-
ables R j .

We now begin the proof. First note that, by the final statement of the above
paragraph, we may as well replace Φ by Rc1

1 · · ·Rcn
n Φ(R1, . . . , c1) where the coeffi-

cients c1, . . . , cn are chosen so that the new function is dimensionless – that is,
b1 = ·· · = bm = 0 in (5).
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The dimension matrix A, having the rank r , has r linearly independent col-
umns. We may as well assume these are the first r columns, corresponding to the
variables R1, . . . ,Rr .2 Then R1, . . . ,Rr are dimensionally independent in the sense
that their only dimensionless combination is the trivial one: Rλ1

1 · · ·Rλr
r is dimen-

sionless only if λ1 = ·· · =λr = 0 (this follows immediately from (4)).
I claim a natural 1–1 correspondence:

(R1, . . . ,Rn) ←→ (R1, . . . ,Rr ,π1, . . . ,πn−r )

Clearly, the only possible difficulty here is expressing Rk (where k > r) in terms
of the quantities on the right-hand side. But linear algebra tells us that column k
of A is a linear combination of the first r columns, and so [Rk ] = [Rc1

1 · · ·Rcr
r ] for a

suitable choice of c1, . . . , cr . But then Rk R−c1
1 · · ·R−cr

r is dimensionless, so it can be

written π
d1
1 · · ·πdn−r

n−r . Therefore we can write Rk = Rc1
1 · · ·Rcr

r π
d1
1 · · ·πdn−r

n−r .
Now, using the above 1–1 correspondence, write

Φ(R1, . . . ,Rn) =ψ(R1, . . . ,Rr ,π1, . . . ,πn−r ) (7)

for a suitable function ψ.
In a moment, I shall prove that ψ(R1, . . . ,Rr ,π1, . . . ,πn−r ) does in fact not de-

pend on R1, . . . ,Rr . Thus we may write

ψ(R1, . . . ,Rr ,π1, . . . ,πn−r ) =Ψ(π1, . . . ,πn−r )

and the proof of Buckingham’s pi-theorem will be complete.
To prove the independence of R1, . . . ,Rr , replace each R j in (7) by its value ρ j

and substitute this in both sides of (6), and remember that bi = 0:

ψ(xa11
1 · · ·xam1

m ρ1, . . . , xa1r
1 · · ·xamr

m ρr ,π1, . . . ,πn−r )

=ψ(ρ1, . . . ,ρr ,π1, . . . ,πn−r ).

Now, I claim that, given positive numbers ρ1, . . . ,ρr , we can pick positive num-
bers xi , . . . , xm so that the numbers x

a1 j

1 · · ·xam j
m ρ j (for j = 1, . . . , r) on the left-hand

side of the above equation can be any given positive numbers. To be specific, we
can make them all equal to 1. That is, we can solve the equations

m∏
i=1

x
ai j

i = 1/ρ j , j = 1, . . . , r

2If not, we just renumber the variables to make it thus.
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with respect to xi . In fact if we write xi = exp(ξi ) the above equation is equivalent
to

m∑
i=1

ai jξi =− lnρ j , j = 1, . . . , r.

This equation is solvable because the left m × r submatrix of A has rank r , and
therefore its rows span Rr . This proves the claim above, and therefore the theo-
rem.

Practice

Pipe flow. We consider the problem of determining the pressure drop of a fluid
flowing through a pipe. If the pipe is long compared to its diameter, we shall
assume that the pressure drop is proportional to the length of the pipe, all other
factors being equal. Thus we really look for the (average) pressure gradient ∇P ,
and presume the length of the pipe to be irrelevant.

Variables that are relevant clearly include other properties of the pipe: Its di-
ameter D, and its roughness e. To a first approximation, we just let e be the aver-
age size of the unevennesses of the inside surface of the pipe; thus it is a length.

Also relevant are fluid properties. We shall use the kinematic viscosity ν=µ/ρ
together with the density ρ. In a Newtonian fluid in shear motion, the shear ten-
sion (a force per unit area) is proportional to a velocity gradient, and the dynamic
viscosity µ is the required constant of proportionality: Thus the units of µ are
Nm−2/s−1 = kgm−1s−1, and therefore the units of ν are m2s−1.

Finally, the average fluid velocity v is most definitely needed.
The dimension matrix can be written as follows.

∇P v D e ν ρ

m −2 1 1 1 2 −3
kg 1 0 0 0 0 1
s −2 −1 0 0 −1 0

We can find the null space of this, and hence use it to find the dimensionless
combinations. However, it is in fact easier to find dimensionless combinations by
inspection. It is easy to see that the matrix has rank 3, so with 6 variables, we must
find 6 − 3 = 3 independent dimensionless combinations. There are, of course,
an infinite number of possibilities, since the choice corresponds to choosing a
basis for the nullspace of A. In this case we may be guided by common practice,
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however, and pick dimensionless quantities as follows:

Reynold’s number Re = vD

ν

Relative roughness ε= e

D

(no name)
∇P ·D

ρv2

Since we expect the ∇P to be a function of the other variables, we should have
a relationship between the above quantities which has a unique solution for the
only variable containing ∇P :

∇P ·D

ρv2 = f (Re,ε),

which we write as

∇P = 2ρv2

D
f (Re,ε).

The extra factor 2 is there because then f is known as Fanning’s friction factor.
Presumably, Fanning used the radius of the pipe rather than the diameter as the
basis for his analysis.

(A copy and description of the Moody diagram should be included here.)
One final remark. We did not really need to write down the dimension matrix.

It is quite clear that the three dimensionless quantities we found are indepen-
dent, since each of them contains at least one variable which is not present in
the two others. Since there were only three fundamental units involved, the di-
mension matrix could not possibly have rank greater than 3, and therefore there
could not exist more than three independent dimensionless combinations. Still,
the dimension matrix provides a convenient way to summarize the dimensions
and to reduce everything to a problem in linear algebra.

Water waves. We consider surface waves in water. These waves can be conve-
niently characterized by a wave number k = 2π/λ (where λ is the wavelength)
and an angular frequencyω. We seek a dispersion relation expressingω as a func-
tion of ω. Presumably, the depth d plays a role, as well as the wave height h, the
acceleration of gravity g , and the fluid properties: the density ρ and (for very
small waves) the surface tension τ. We shall assume that the viscosity is negligi-
ble.

The dimensions of all these variables can be summarized as follows.

Variable ω k h d ρ τ g

Units s−1 m−1 m m kgm−3 Nm−1 = kgs−2 ms−2
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With no less than seven variables, and three fundamental units, we expect to find
four independent dimensionless combinations. One reasonable choice is (Bo is
the Bond number):

hk, dk,
ω2

g k
, Bo = ρg

τk2 .

A relationship between all these, solved for the one combination that involvesω,
then leads to a relationship of the form

ω2 = g k Ψ
(
hk, dk,Bo

)
.

We see that, for example, when waves are long, Bo is large, so we may ignore the
influence of surface tension. If the water is deep compared to the wave length
then dk ≈∞, while if the wave height is small compared to wave length, hk ≈ 0.
When all of these approximations hold, then, we expect Ψ to be roughly con-
stant, so ω2 is proportional to g k. In fact we find ω2 = g k in the limit, but this
requires more detailed analysis.

For very short waves (ripples) in deep water, it seems reasonable to assume
that only surface tension is responsible for the wave motion, so that g does not
enter the problem. You could do a new dimensional analysis under this assump-
tion, but it is easier to see directly that Ψ must be a linear function of its last
argument for g to cancel out. If we still assume dk À 1 and hk ¿ 1, we end up
with a relationship of the form

ω2 = τk3

ρ

except the right-hand side should be multiplied by a dimensionless constant. But
again, this constant turns out to be 1.
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