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The divergence theorem revisited
I shall follow the textbook in using only a single integral sign even for multiple
integrals in the abstract. (If I ever need the iterated integrals, I shall of course
write out all the integral signs.)

The divergence theorem is then written as∫
R

∇ · FdV =
∫

∂V

F · ndS

in three dimensions.
It works just as well in two dimensions, if we replace the volume element dV

by the area element dA and the surface element dS by ds where s is arclength:
Then it is simply Green’s theorem∫

R

(∂Q

∂x
− ∂P

∂y

)
dA =

∫
∂R

P dx + Qdy

if we note that the outward pointing unit normal is n = (dy/ds,−dx/ds) and
we put F = (Q,−P ).

It even works in one dimension: A vector field in one dimension is nothing
but a function f , its divergence is the derivative f ′, the boundary of an interval
R = [a, b] is the set {a, b} of end points, and then it is just the fundamental
theorem of calculus ∫

[a,b]

f ′(x) dx = f(b)− f(a)

where the righthand side is suitably considered as a zero-dimensional integral,
i.e., a sum of fn over the set {a, b} where the outside normal n is +1 at b and
−1 at a.

In the following, I shall mostly stick to three dimensions. I hope it is clear
from the above how the results can be applied in one or two dimensions as
well.
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Flux and conservation
A flux is defined to be the amount of some quantity moving across a given
surface per unit time.1 Very often, a flux can be derived from a flux density,
which is a vector field φ so that the corresponding flux across a surface S is

Φ =
∫

S

φ · ndS.

A conservation law is an equation of the form

d
dt

∫
R

ρ dV +
∫

∂R

φ · ndS =
∫

R

q dV

with the interpretation that ρ is a density of something, so that the
∫

R
ρ dV is

the amount of this something inside R, the surface integral is the flux across
the boundary of R, and

∫
R

q dV is a source term.
For example, ρ could be ordinary mass density, in which case the source

term is usually zero. Or ρ could be a concentration of some chemical, in which
case q would represent the result of a chemical reaction involving the chemical
(creating or destroying it). In the latter case, the flux density might arise from
a combination of movement of a macroscopic medium (fluid?) and molecular
diffusion of the chemical within the fluid.

Provided that the functions involved are sufficiently smooth (C1 is usually
enough), the general conservation law can be rewritten as∫

R

∂ρ

∂t
dV +

∫
R

∇ · φ dV =
∫

R

q dV.

If this is assumed to hold for every region R, we can apply the Raymond–
Dubois theorem2 to conclude that

∂ρ

∂t
+∇ · φ = q.

For example, in a continuum with mass density ρ and velocity v, the mass flux
is ρv and q = 0, so we get the law of mass conservation:

∂ρ

∂t
+∇ · (ρv) = 0. (1)

1This ignores quantities like magnetic flux, which is of course interesting but not our
concern presently.

2If f is locally integrable and
R

R f dV = 0 for every region R, then f = 0 almost every-
where. If you don’t know what that means, don’t worry. For a continuous function f , it is
equivalent to f = 0 everywhere. The Raymond–Dubois theorem for continuous functions is
really trivial.
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The transport theorem and its applications
Some times, conservation laws are more easily expressed in terms of a moving
volume. The transport theorem3 allows us to transform such a conservation
law to one that involves a fixed volume instead.

The notation tends to get hairy, so let us fix our attention on a specific
time t = 0. A region R(t) is assumed to move with the velocity v(x, t), which
simply means that, whenever a point with coordinates x(t) moves with the
velocity field, i.e., it satisfies the differential equation ẋ = v(x, t), then either
x(t) ∈ R(t) for all t, or x(t) /∈ R(t) for all t.

In this case, the transport theorem states that

d
dt

∫
R(t)

ρ dV

∣∣∣∣
t=0

=
d
dt

∫
R(0)

ρ dV

∣∣∣∣
t=0

+
∫

∂R(0)

ρv · ndS.

The first term on the righthand side is interpreted as the change due to changes
in the field ρ, wherease the second term comes from the movement of the
boundary with velocity v. Intuitively, where v ·n > 0, the boundary is moving
outward, extending the region R, and so including more of ρ.

There is of course nothing special about the time t = 0. We often write the
transport theorem in the simplified form

d
dt

∫
R(t)

ρ dV =
d
dt

∫
R

ρ dV +
∫

∂R

ρv · ndS.

where it is to be understood that the region R is supposed to be kept fixed
while we differentiate the first integral on the righthand side: But then we put
R = R(t) afterwards.

One application of the transport theorem is to the conservation of momen-
tum for a continuum, which we write on the form

d
dt

∫
R(t)

ρv dV =
∫

∂R

n · σ dS +
∫

R

ρg dV.

Don’t worry too much about the mysterious term n · σ yet: It is merely the
force per unit area, or surface stress, acting on the surface of R. The final term
is due to gravity, but could be generalized in more or less obvious ways to
other body forces such as electromagnetic forces, for example. My point here
is to point out that we can get rid of the troublesome moving region R(t) by
employing the transport theorem to rewrite the lefthand side:

d
dt

∫
R

ρv dV +
∫

∂R

(ρv)(v · n) dS =
∫

∂R

n · σ dS +
∫

R

ρg dV. (2)

3I am not too sure how widespread this name is.
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The new lefthand side can be interpreted as the rate of change of momen-
tum inside the fixed region R, plus the flux of momentum carried with the
continuum across the boundary of R.

It would seem very questionable to write up this equation from scratch,
since we relied on the usual notation of a physical system as consisting of a
fixed collection of matter.

We can apply the same thinking to energy conservation: The result is

d
dt

∫
R

edV +
∫

∂R

ev · ndS =
∫

∂R

n · σ · v dS

where e is the energy density, and the righthand side is the work done by the
surface forces on the system. But haven’t I forgotten the work of gravity? No,
I have incorporated that into e by writing e = u + 1

2ρv2 + ρgz, where u is the
internal energy.

To continue the example, assume the continuum under study is an inviscid
fluid. Then n · σ = −pn, where p is the pressure. Assume further that we’re
looking at a steady state. Then the first time derivative is zero, and so we’re
left with4 ∫

∂R

(e + p)v · ndS = 0.

Now, let R be a stream tube: I.e., a long thin tube whose sides consists of
stream lines of the flow. Thus v · n = 0 along those sides, and so only the two
ends of the stream tube contribute to the integral. At the ends, we may assume
that e and p are constants (different constants at the two ends of course), and
v ·n = ±v is simularly constant at each end. Finally, the total mass flux ρv∆S
is constant along the tube, and so we are led to the conclusion that (e− p)/ρ
is the same at each end; i.e., this quantity is constant along stream lines.

This is nothing but Bernoulli’s law : If the fluid is incompressible and no heat
transfer occurs, we may ignore the internal energy u, and so write (e− p)/ρ =
1
2v2 + gz + p/ρ for the quantity that is constant along stream lines.

The stress tensor
The surface stress across a surface S in a continuum is a vector field T on the
surface so that the total force across the surface is∫

S

T · ndS.

4You should convince yourself that e, the energy density (energy per volume) and p, the
pressure (force per unit area) have the same dimensions.
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To be precise, this is the force by the side which n points into, acting on the
side which n points out of.

Clearly, T is a function of position, time and the normal vector, so we should
write it T(x, t,n).

Newton’s third law immediately tells us that T(x, t,−n) = −T(x, t,n).
Moreover, it can be shown under quite moderate assumptions that T must

be a linear function of n. Now that makes little sense perhaps, since n is
constrained to be a unit vector. But we help things along by extending the
definition of T by setting T(x, t, αn) = αT(x, t,n) for any α > 0. Since we
have just seen that it also holds for α = −1, it must then hold for all real α,
so only the additivity remains to prove.

We can show this by considering a small prism with parallell end surfaces
and a triangular cross-section. If T is not additive, it turns out the prism must
accelerate with a speed that goes to infinity as the size of the prism goes to
zero.5

This leads then to the definition of the stress tensor : Remember from linear
algebra that all linear maps can be implemented by matrix multiplication. The
stress tensor σ is the required 3× 3 matrix, so that

T(x, t,n) = n · σ.

A consideration of angular momentum and small regions leads to the conclusion
that σ must be symmetric, or else small region will achieve an ubounded
angular momentum.

Continuum mechanics
We can now get back to (2) and apply the standard tricks of the trade to it,
with the result

∂(ρv)
∂t

+∇ · (ρv ⊗ v) = ∇ · σ + ρg.

Here, the tensor product ρv⊗v is defined as the tensor with (i, j) component
ρvivj , and ∇ · σ is the vector with j component∑

i

∂σij

∂xi

and similarly for ∇ · (ρv ⊗ v).6 If we use the product rule can write this as
∂ρ

∂t
v + ρ

∂v
∂t

+
(
∇ · (ρv)

)
v + ρ(v · ∇)v = ∇ · σ + ρg.

5I would write out the details, but time does not permit this right now.
6You should convince yourself that the divergence theorem works for tensor fields, by

writing out the usual divergence theorem in component form.
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The thing to notice here is that the first and third terms cancel because of
mass conservation (1), and so we are left with

∂v
∂t

+ (v · ∇)v =
∇ · σ

ρ
+ g (3)

after dividing by ρ. This is the general equation of motion of a continuum, so
long as no discontinuities appear. (Except we may still wish to generalize the
body force term g.)

Newtonian fluids
An incompressible Newtonian fluid is one in which we can write the (i, j)
component of the stress tensor as

σij = −pδij + µ
( ∂vi

∂xj
+

∂vj

∂xi

)
where δ is ths usual Kronecker delta: δij = 0 if i 6= j, and δij = 1 if i = j.
(Matters get a bit more complicated for compressible fluids.) Plugging that
into (3) we quickly arrive at

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p + ν∇2v + g,

which is the Navier–Stokes equation for an incompressible fluid.
Above, µ is the dynamic viscosity of the fluid, and ν = µ/ρ is the kinematic

viscosity of the fluid.
For an inviscid fluid, i.e., one with zero viscosity, we are then left with the

Euler equation
∂v
∂t

+ (v · ∇)v = −1
ρ
∇p + g,

which has a much wider applicability than you’d think, because it can often
be used away from a turbulent boundary layer. The basic theory of airfoils, for
example, is largely based on the Euler equations. This is perhaps more easily
seen from the scaled Navier–Stokes equation (without gravity):

∂v
∂t

+ (v · ∇)v = −∇p +
1

Re
∇2v,

which becomes the Euler equation if we let Re → ∞. (But this is a singular
perturbation: It turns a second order equation into a first order one.)
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