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1 INTRODUCTION

This note is based on a Mathematical Modelling seminar in 1995 dealing with population models.
The note is rather concise and assumes that the reader already has some knowledge in analysis
of non-linear systems of differential equations. At the end of the note, you can find some of the
references that the material is collected from, and an appendix which shows how to make a simple
Matlab program for examining some of the treated systems.

2 THE LOGISTIC EQUATION

The logistic equation is a non-linear first order differential equation that can be written

dN
∗

dt∗
1

N∗
= r

(
1− N∗

K

)
. (1)

The equation describes the number of individuals N∗ in a single population as a function of time t∗.
The constant K is called the sustainable level or capacity, while r is a growth rate. If N∗ � K,
the solution is approximately exponential N

∗
= N0 exp(rt∗), with natural time scale 1/r. The

capacity K, which is also a stationary solution, gives us a scale for N∗. This leads to the scaled
equation

dN

dt
= N −N2. (2)

The most natural is to solve the equation by separation, but the simplest is to introduce U = 1/N ,
which gives the linear equation U̇ + U = 1, with general solution

U (t) = 1 +Ae−t. (3)

Thus,
N (t) = (1 +Ae−t)−1. (4)

Depending on the sign of A, the solution may be expressed as

s (t) =
1

1 + e−(t−t0)
(5)

for A > 0, and

s (t) =
1

1− e−(t−t0)
(6)

for A < 0.

We see that all solutions in the interval 〈0, 1〉 are expressible by the single function

s(t) =
1

1 + e−t
, (7)

which is called the logistic curve, or the sigmoid. Solutions in the interval 〈1,∞〉 evolve according
to the single function 1/(1− e−t), as shown in figure 1.

We immediately see that N ≡ 1 is a stable equilibrium solution, while N ≡ 0 is unstable
(Physically, N = 0 is of course stable!). One feature of the sigmoid is that no matter how much
time it has taken a population to reach a certain level, e.g. K/10, it will only take time O(1/r)
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Figure 1: Solutions of the dimensionless logistic equation.

to reach saturation. We also note that no matter how high the starting level is, we will reach
equilibrium in time O(1/r). Thus, changing K significantly has dramatic consequences.

It is useful to apply the trick of introducing U = 1/N even when r and K vary with time. Let
us change the notation above for a moment and write K∗(t∗) = Kκ(rt∗), r∗ = rρ(rt∗). After
scaling, we get the equation

dN

dt
= ρ(t)N (1−N/κ(t)) , (8)

or
dU

dt
+ ρ(t)U = ρ(t)/κ(t), (9)

which is a linear first order equation. As a simple example, consider ρ(t) = 1 and 1/κ(t) =
1 + a sin(ωt). Then, after all transients have died out, the solution is

N(t) =

{
1 +

a√
1 + ω2

sin (ωt− φ)

}−1
, φ = arcsin

(
ω√

1 + ω2

)
. (10)

The behaviour when ω → 0 and ω →∞ is as expected.

2.1 Hunting and Catching

It is easy to incorporate hunting or catching into the logistic model, e.g. the fish stock in a certain
part of the ocean. The model starts from the logistic equation and additionally assumes a level
of fishing per unit of time which is proportional to the fish stock and the number of boats u∗

participating,
dN∗

dt∗
= rN∗

(
1− N∗

K

)
− αN∗u∗. (11)

By a similar scaling as above, the equation becomes

dN

dt
= N −N2 − µN, µ = αu∗/r. (12)

The equilibrium solutions become N1 = 0, N2 = 1 − µ. Standard linear stability analysis gives
that the solution N1 = 0 is stable for µ > 1 and unstable for µ < 1, while N2 = 1 − µ is stable
when µ < 1. The case µ = 1 is left for the reader.
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A steady withdrawal per time unit can be expressed as

dQ

dt∗
= αN2u

∗ = αu∗K(1− µ) = rKµ(1− µ), (13)

which reaches a maximum for µ = 1/2, i.e. u∗ = r/(2α) and N
∗
2 = K/2. Hence, optimal resource

management is attained when the stock is kept at a level with maximal growth, i.e. at half the
maximal stock level. This is a well known “law” in resource management.

2.2 Delayed reaction

Delay in a logistic model enters naturally in systems where the growth is dependent on the
conditions some time back. The equation is

dN∗

dt∗
1

N∗
= r

(
1− N∗(t∗ − τ∗)

K

)
(14)

which becomes, after scaling in the same way as before,

dN(t)

dt
= N(t) (1−N(t− τ)) . (15)

In May 1973 the Norwegian Nobel prize winner in economics, Ragnar Frisch, was the first to
start applying such models. In general, it is not possible to solve the equation analytically, but
we still have the equilibrium equation N(t) ≡ 1. Linear stability analysis is about introducing
N(t) = 1+a(t) and neglecting terms that are O(a2). This gives us the prototypical delay equation

ȧ(t) = −a(t− τ). (16)

The equation is linear, so the sum of two solutions is still a solution. Thus, it is reasonable to
study the behaviour of Fourier components, and by inserting a component of the form a(t) =
a0e

zt, z = x+ iy, we get a complex equation for z,

z = −e−zτ , (17)

or the following pair for (x, y):

x = −e−xτ cos(yτ),

y = e−xτ sin (yτ) (18)

Since e−zt = e−xte−iyt, the stability properties are determined by the value of x. It is easy to
show that if 0 ≤ τ < 1/e, the solution is real with −e < x < −1. In other words, N(t) = 1 is
stable. In the interval 1/e < τ ≤ π/2, the dominant solution will still have negative real part, but
it will now be complex. This gives damped oscillations, which in the limit with small amplitude
is exponentially damped. When τ = π/2, the linearised equation has a periodic solution, and for
larger τ there will be solutions where x > 0. Then, N(t) = 1 is no longer stable.

For further studies of delay equations, see the literature, e.g. Hairer, Nørsett and Wanner
(1993). It has been said that this type of equations explains the dramatic population cycle of
lemmings (see figure 2). Note that there are freely available program packages on the Internet for
solving delay equations in Matlab.
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Figure 2: Lemming density in Churchill, Canada, adapted to a delay of 9 months (one winter)
(May, 1978).

3 THE GROWTH OF THE EARTH POPULATION

In laboratory studies of closed bacterial cultures, it has proven hard to find a behaviour following
the logistic model. Instead, the population eventually tends to zero because of self-poisoning. It’s
not improbable that something similar will hold for humanity. The poisoning may be caused by
PCBs, long-lived radioactive isotopes, or hormone copycats affecting fertility. This has already
occurred for our neighbours in the Arctic.

In a world where social benefits are more equally distributed, it would be natural that the
amount of pollution released per unit time is proportional to the number of individuals. The total
amount of pollution at time t∗ is then proportional to∫ t∗

−∞
N∗ (s∗) ds∗ (19)

if the pollution does not brake down with time. In addition, we assume that the negative effect on
the growth rate is proportional to the amount of pollution. This gives us the following modified
model:

1

N∗ (t∗)

dN∗ (t∗)

dt∗
= r

(
1− N∗ (t∗)

Nm

)
− c

∫ t∗

−∞
N∗ (s∗) ds∗, c > 0. (20)

(Note: This is not a new and original model, but the exact reference to the literature is missing).

Is it possible that a population following this equation would survive in the long term? Assume
that limt∗→∞N

∗ (t∗) = a > 0, and that the population development starts at Ns < Nm. The
solution will stay below Nm and thus,

dN∗ (t∗)

dt∗
< Nm

(
r − c

∫ t∗

−∞
N∗ (s∗) ds∗

)
. (21)

Since limt∗→∞N
∗ (t∗) = a, the right-hand side will tend to −∞ when t∗ →∞, which is completely

incompatible with N∗ (t∗)→ a.
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A simple alternative model which doesn’t have as dramatic consequences, is

1

N∗ (t∗)

dN∗ (t∗)

dt∗
= r

(
1− N∗ (t∗)

Nm

)
− c

∫ t∗

−∞
e−(t

∗−s∗)/τN∗ (s∗) ds∗. (22)

Here, the pollution (or the effect on the growth rate) is broken down with time constant τ ,
and it seems that a certain population level can survive (Details are left for the reader).

Let us go back to equation 20 and scale it in the usual way. This results in

1

N

dN

dt
= 1−N − α

∫ t

−∞
N (s) ds, α =

cNm

r2
. (23)

The equation reduces to a 2nd order equation by introducing C (t) =
∫ t
−∞N (s) ds, but it can

probably not be solved analytically. If α is large, and we start with a small population, we can
expect that N never reaches 1. Then, if we neglect the second term on the right-hand side, we
obtain an equation which gives us an upper limit for the population developing according to the
complete equation,

1

Nu

dNu

dt
= 1− α

∫ t

−∞
Nu (s) ds. (24)

We introduce P (t) = α
∫ t
−∞Nu (s) ds, which leads to the equation

P ′′ = P ′(1− P ). (25)

The equation can be integrated once,

P ′ (t) = P − P 2

2
+A, (26)

where A is a constant.

If we restrict to the situation where both P (t) and P ′ (t) tend to 0 when t → −∞, we must
have A = 0, and we get a logistic equation. The solution for N is then

N (t) =
1

α
P ′ (t) =

1

2α
cosh−2

(
t− t0

2

)
. (27)

This function is not dissimilar to a Gaussian bell curve with a maximum for t = t0. As
expected, small α gives large maximum population.

If one were to adapt the model to actual data, one could start with the inflection points of the
function. Let

N0 (τ) = cosh−2 (τ/2) . (28)

It is easy to show that N ′′0 (τ) = 0 for τ = ±2 atanh (1/3) = ±1.3170 . . . Hence, if we set τ0 =
−2 atanh (1/3), we find

N0 (τ0) =
2

3
,

N ′0 (τ0) =
2

9

√
3. (29)
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Figure 3: The time evolution of the Earth’s population for a logistic model with pollution (solid
curve). Actual population evolution and the UN’s estimates (stars).

The population of the Earth is claimed to have passed the inflection point N ′′ (ts) = 0 in 1996,
when we, according to my sources, had

N (ts) = 5.75× 109 individuals,

dN

dt
(ts) = 8.3× 107 years−1. (30)

By letting

N∗ (t∗) = NmaxN0

(
t∗ − tmax

B

)
, (31)

we obtain

Nmax =
3

2
5.75× 109 = 8.62× 109,

B =
8.62× 109

8.3× 107
2

9

√
3 years = 40 years (32)

tmax = 1996 + 1.3170× 40 = 2049.

In figure 3, N∗ (t∗) is plotted against year, and it is compared to data and predictions (created
by the UN) which are available on Wikipedia. As expected, the curves coincide between 1950 and
2040, but one can clearly not trust such a model too much.

4 COMPETITION FOR THE SAME RESOURCES

In 1934, the Russian biologist Georgyi Frantsevitch Gause (1910–1986) wrote the book The
Struggle for Existence, where he formulated The Competitive Exclusion Principle, which states
that two species cannot coexist in the long term if they compete for the same limited resource
(applicable to the current situation in the Middle East?). A simple model which reflects such a
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Figure 4: Numerical solutions for Gause’s model with ε = 1.

situation is the following:

1

N
∗
1

dN
∗
1

dt∗
= r1

(
1− αN ∗

2

)
, (33)

1

N
∗
2

dN
∗
2

dt∗
= r2

(
1− βN ∗

1

)
. (34)

Two obvious time scales appear, namely 1/r1 and 1/r2. If the difference between the time scales
is large, this will be a stiff system, with behaviour characteristic for singular perturbation. The
scaling is easy, and leads to a dimensionless system of the form

dx

dt
= x (1− y) ,

dy

dt
= εy (1− x) ,

where the parameter ε expresses the relationship between the time scales. From the symmetry of
the equations, we see that all conclusions reached about small ε can be rewritten to corresponding
statements for large ε. Thus, it is enough to consider ε < 0 ≤ 1. The system has equilibrium points
in (1,1) which is a saddle point, and (0,0) which is an unstable node. If one of the populations is
0, the other grows without limits, so the model is not especially realistic.

A numerical solution of the system for ε = 1 is shown in figure 4. We see that the first
quadrant splits into four areas delimited by the coordinate axes and two curves crossing each
other in (1,1). These curves are called separatrices. Systems close to the separatrix y = x live
dangerously: A small disturbance may cause the movement to jump over to the other side, and
we get a fundamentally different development of the population.

It is easy to find an implicit equation for the trajectories by dividing the equations by each
other and separating the variables:(

1

y
− 1

)
dy = ε

(
1

x
− 1

)
dx. (35)
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This gives all non-trivial trajectories, expressed as

ye−y = C
(
xe−x

)ε
, 0 < ε ≤ 1, (36)

where C is a positive constant. For given values of ε and C we see from xe−x that there exist
four pairs of solutions. Pairs of these lie on the same trajectories. The maximum value of the
left-hand side is e−1. If maxxC(xe−x)ε > e−1, i.e. C > eε−1, we describe the trajectories to the
right and left of the equilibrium (1,1). Otherwise, we describe the trajectories over and under
(1,1). The separatrices are given implicitly by

ye−y = eε−1
(
xe−x

)ε
. (37)

Corresponding models have also been made for warfare. One should take care when making
conclusions from such primitive models, as there exist systems in nature that apparently violate
Gause’s principle (among others, plankton, according to Wikipedia).

5 THE LOTKA–VOLTERRA EQUATIONS

The Lotka–Volterra equations, also known as the predator-prey equations were formulated by
Alfred J. Lotka and Vito Volterra independently, around 1925. Since the equations are described
in detail in most books about non-linear differential equations, the presentation below is very
brief. In the same way as the equations above, they can be written as a system

1

N
∗
1

dN
∗
1

dt∗
= r1

(
1− αN ∗

2

)
, (38)

1

N
∗
2

dN
∗
2

dt∗
= r2

(
−1 + βN

∗
1

)
, (39)

where N
∗
1 is the prey density and N

∗
2 is the predator density. As in the preceding paragraph,

after scaling the system attains the form

dx

dt
= x (1− y) , (40)

dy

dt
= εy (−1 + x) , (41)

with equilibria in (1,1) and (0,0) independent of the size of ε. The first is a centre, and the second
a saddle point. The trajectories are shown in figure 5.

Here, the implicit equation for the trajectories is

ye−y
(
xe−x

)ε
= C, 0 < C. (42)

Since the left-hand side is limited from above by e−1−ε, we must have C < e−1−ε. For a given
possible value of C, x will also be restricted to the interval around x = 1 which satisfies (xe−x)

ε ≥
Ce. We get a similar interval for y defined by ye−y ≥ Ceε. Thus, the trajectory is inside a
rectangle which is defined by equality of the respective inequalities. The shape of the rectangle is
determined by ε and C. When C approaches its maximum value, the trajectories shrink towards
(1, 1) and become approximately elliptical with centre (1, 1). When C � 1 the trajectory shifts
towards the coordinate axes, unless y ≈ −εx − ln(C), which is the trajectory far away from the
coordinate axes. The orbit shape is roughly triangular.
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Figure 5: Paths of the Lotka–Volterra system when ε = 1 calculated numerically. The numerical
solution goes around the orbits several times and does not connect perfectly.

Limitations in growth as in the logistic equation leads to scaled equations of the form

dx

dt
= x (1− y − αx) , (43)

dy

dt
= εy (−1 + x− βy) (44)

with equilibria in the origin and (x0, y0) where

x0 =
1 + β

1 + αβ
, y0 =

1− α
1 + αβ

. (45)

We leave to the reader to show that (x0, y0) becomes a stable focus when α and β are small.
What else happens?

If we return to the original Lotka–Volterra equations and utilise that the trajectories are
periodic with period T , we get

1

r1

T∫
t∗=0

dN
∗
1

N
∗
1

=

T∫
t∗=0

(
1− αN ∗

2

)
dt∗ = T − α

T∫
t∗=0

N
∗
2 dt
∗, (46)

and correspondingly for the other equation. But, since

1

r1

T∫
t∗=0

dN
∗
1

N
∗
1

=
1

r1

(
ln(N

∗
1 (T )− ln(N

∗
1 (0)

)
= 0, (47)

so

1

T

T∫
t∗=0

N
∗
2 dt
∗ =

1

α
, (48)

1

T

T∫
t∗=0

N
∗
1 dt
∗ =

1

β
. (49)
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The average levels become equal to the values in the equilibrium point.

If one studies the predator-prey models a little more in depth, one will see that the Lotka–
Volterra equations are special. Typically, such models will have stable equilibrium points. If one
observes oscillations in nature, these will not be periodic solutions about a neutral equilibrium
point, but so-called stable limit cycles that are more stable to perturbations.

Delays in the Lotka–Volterra models have also been studied, and such equations can, unlike
ordinary equations actually have chaotic behaviour.

It is also possible to study what hunting means to a Lotka–Volterra system. If we assume
constant capture relative to population, this can be modelled as

dN
∗
1

dt∗
1

N
∗
1

= r1

(
1− αN ∗

2

)
− f1, (50)

dN
∗
2

dt∗
1

N
∗
2

= r2

(
−1 + βN

∗
1

)
− f2. (51)

Since we can write

dN
∗
1

dt∗
1

N
∗
1

= (r1 − f1)
(

1− r1α

r1 − f1
N

∗
2

)
, (52)

dN
∗
2

dt∗
1

N
∗
2

= (r2 + f2)

(
−1 +

r2β

r2 + f2
N

∗
1

)
, (53)

we see that as long as the parameters are constant, the behaviour will be like for a Lotka–Volterra
system with modified parameters. In particular,

1

T

T∫
t∗=0

N
∗
2 dt
∗ =

1

α

r1 − f1
r1

, (54)

1

T

T∫
t∗=0

N
∗
1 dt
∗ =

1

β

r2 + f2
r2

. (55)

The model is not necessarily realistic if one looks at the average catch per time unit:

F1 =
〈
N

∗
1

〉
f1 =

1

β

r2 + f2
r2

f1, (56)

F2 =
〈
N

∗
2

〉
f2 =

1

α

r1 − f1
r1

f2. (57)

We observe that if we just catch predators (f1 = 0), we will be able to capture an unlimited
amount, without the average level changing. In contrast, the average of the prey population will
grow (!). There is much that one could study for such systems, for example, how the behaviour is
when one has time dependent catch with variations that are long and short relative to the period
of the stock variations.
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Figure 6: All equilibrium solutions lie within the shaded area when fN and fH are between 0 and
1.

6 WHALES AND KRILL

Around 1980, R. M. May made a model for the whale-krill system in Antarctica, where N∗ is the
krill population and H∗ the whale population:

dN
∗

dt∗
1

N ∗ = r

(
1−N

∗

KN

)
− a2H∗ − uNFN , (58)

dH
∗

dt∗
1

H∗
= q

(
1− H

∗

αN∗

)
− uHFH (59)

As seen, the maximum sustainable level of the whale stock is proportional to the krill level.
The growth rates r and q must be expected to be quite different, and so that 1/r � 1/q, i.e.
ε = q/r � 1. If we scale based on the time scale for changes in the whale population, we end up
with the following singularly perturbed system:

εṄ = N (1−N − γH − fN ) , (60)

Ḣ = H (1−H/N − fH) (61)

We assume that fN and fH are constants between 0 and 1. Then the model has a stationary
point in

N0 =
1− fN

1 + γ(1− fH)
, (62)

H0 =
(1− fN )(1− fH)

1 + γ(1− fH)
, (63)

and all singular points lie inside a triangle, as pointed out in figure 6.

The equilibrium solutions are stable focuses, as shown in figure 7. When ε is small, the
solutions bear the characteristic sign of singular perturbation.
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Figure 7: Phase plot of the whale-krill system with fN = 0.2 and fH = 0.1, γ = 0.5 with ε = 1 to
the left, ε = 0.02 to the right.

This behaviour is not so striking in areas where N = O(ε) or N � H, since one then also will
have other small terms in the equations. If the population of whales is lower than the equilibrium
level, one sees how the system quickly approaches a “quasi-static equilibrium”, approximately
given by 1−N −γH − fN = 0, and then follows it towards the equilibrium point. Obviously, this
is due to the krill population reacting quickly compared to the whale stock.

For a given catch rate, the amount caught per time unit is

PN = fNN0 =
fN (1− fN )

1 + γ(1− fH)
, (64)

PH = fHH0 =
fH(1− fH)(1− fN )

1 + γ(1− fH)
(65)

We see that the maximum amount of krill we can take out is given by fN = 1/2 whatever
the catch of whales, while the maximum amount of whales is fH =

(
1 + γ

√
1 + γ

)
/γ. It is not

possible to increase whaling by fishing krill, while it of course is beneficial to catch whales to be
able to catch more krill.

It is easy to imagine economic issues related to such a model. If one catches both whales
and krill, one is interested in maximising profits. If the prices are pN and pH , one would like
to maximise economic return per time unit, pNPN + pHPH . At the same time there’s a limit to
the weight of catch over a period T that can be transported with available tonnage, (wNPN +
wHPH)t ≤ L.

If catch rates are proportional to the inverse of the populations, i.e. a fixed quantity is fished
per unit of time irrespective of the size of the stocks, the equations are more cumbersome. Any
equilibrium solutions can be found from

N (1−N − γH − aN/N) = N −NH2 − γHN − aN = 0, (66)

H (1−H/N − aH/H) = H −H2/N − aH = 0. (67)

13



If we assume that γ = 1 and that we only catch whales, we deduce that

N0 = 1−H0,

H0 =
1 + aH ±

√
(1 + aH)2 − 8aH

4
. (68)

In other words, if 0 < aH < 3 − 2
√

2, we have two equilibrium points. We leave details to the
reader.

An important aspect of such models is whether they are stable against disturbances, and how
well the catch can be controlled by decree, etc. As one understands, there is unlimited potential
for both mathematical, numerical and economic analysis.

7 SPECIES THAT BENEFIT FROM EACH OTHER

There are many examples of systems where the species have mutual benefit of each other. Plants
that depend on pollinators is one such example. Pollinators on the other hand receive nectar
from the plant. In some situations the pollinators are specially adapted to one type of plants (or
perhaps the reverse is true?).

It is easy to see that the following simple model, where P is plant population and B is the
pollinator, leads to an absurdity:

dB∗

dt∗
1

B∗
= (−1 + αP ∗), (69)

dP ∗

dt∗
1

P ∗
= ε(−1 + βB∗). (70)

It is a bit more surprising that

dB∗

dt∗
1

B∗
= (−1 + αP ∗ − γB∗), (71)

dP ∗

dt

1

P ∗
= ε(−1 + βB∗ − δP ∗) (72)

does not work either.

The following model, which is taken from May (1978), starts with a logistic equation for the
pollinators, where the sustainable population level depends on the plant population:

dB∗

dt∗
= rB∗

(
1− αB

∗

P ∗

)
. (73)

The plant quantity in turn satisfies an equation of the form

dP ∗

dt∗
= −qP ∗ + I

B̂

B̂ + C
, (74)

where B̂ is the effective density of pollinators. If there are very few plants, it is not certain that
the pollinators can find plants (B̂ � B∗), while if there are many plants, all pollinators find
enough plants (B̂ ≈ B∗). A possible model for B̂ can then be

B̂ = B∗
P ∗

P ∗ +D
. (75)
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Figure 8: Phase diagram for pollinators (B) and plants (P ) for a situation where we have one
stable and one unstable equilibrium point.

Together, this gives the equations

dB

dt

1

B
= 1− aB

P
,

dP

dt

1

P
= −ε+ b

B

BP + P + 1
, (76)

where we have scaled in the following way:

P ∗ = DP, B∗ = CB, a = αC/D, b = I/(rD), t∗ = tr, ε = q/r. (77)

By solving for the equilibria, we end up with

B0 =
1

2aε

(
b− εa±

√
(b− εa)2 − 4aε2

)
, (78)

P0 = aB0. (79)

There will be two equilibria in the first quadrant if 0 < b− εa, 0 < (b− εa)2 − 4aε2, or

0 < (I − qαC)/D, (80)

0 <
I − qαC)2 − 4αq2CD

D2
. (81)

Figure 8 illustrates a random set of parameters that give two equilibria (ε = 1/2, a = 1, b = 1.7).

If the system is left of the separatrix, it dies out. Isolated systems of this kind are common
only in areas with stable climatic conditions. According to the reference, there are e.g. no such
ant-plant systems north of 24◦, no nectar-eating bats (!) north of 33◦, or orchid-bees north of 24◦

in America.
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8 AFTERWORD

The mathematical theory underlying the models we have seen is a part of what is called dynamical
systems. This is a field with large and interesting activity that not only includes differential
equations, but also time-discrete and stochastic models. In special cases, e.g. for some systems of
ordinary differential equations with more than two variables, discrete models, or equations with
delay, the solutions exhibit so-called chaotic behaviour. In nature, both systems that seem to
be fairly robust to disruptions (e.g. described by the before-mentioned stable limit cycles), and
the completely opposite occur (e.g. the equations for atmospheric turbulence, which controls the
weather).
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10 APPENDIX: EQUATION SOLVER IN MATLAB

There are many interactive solvers for two-dimensional ODE systems on the Internet. Below is
a simple solver in Matlab, so that one can test out the systems that are discussed in the text.
The solver consists of two m-files. The first is the program itself, while the second computes
the derivatives (right-hand side) of the equations. See the documentation of Matlab for more
information about ode45. The Matlab function ginput makes it possible to point in the plot
with the mouse to set the initial values (Text after % in the code are comments).

tspan = [0 10]; % Define a time interval

axis([-3 3 -2 4]); grid; % Define the axes

hold on % Lock the coordinate system

for loop = 1:100 % Allow for up to 100 repetitions

x0 = ginput(1); % Pick the initial value by pointing with the mouse

[t,x]=ode45(’xder’,tspan,x0); % Integrate the equation

plot(x(:,1),x(:,2)) % Draw the path

end;

function xd=xder(t,x)

s = x(1);

c = x(2);

xd(1)=-s*(1-c)+c;

xd(2)=s*(1-c)-c+(1-c).^2;

xd = xd’; % column vector

Figure 9 shows an example of how the trajectories look for the equation above with a random
selection of initial values.
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Figure 9: Trajectories of the equation as defined in the Matlab file xder.m in the text. Starting
points are selected with the mouse so that it is possible to examine specific areas of the graph in
detail.
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