Equilibrium points

1. Equilibrium point:

A constant solution u_e of the problem (e.g. ODEs or PDEs)

2. **Stable** equilibrium point u_e :

All solutions u(t) starting near u_e , remain near u_e for all $t \ge 0$:

 $\forall \varepsilon > 0 \ \exists \delta > 0 \quad \text{s.t.} \quad |u(0) - u_e| \leq \delta \Rightarrow |u(t) - u_e| < \varepsilon \quad \forall t > 0$

- 3. Linear stability analysis for u_e
 - set solution $u = u_e + \tilde{u}$, $|\tilde{u}| \ll 1$ small perturbation
 - **2** insert into equation, drop small(=non-linear) terms \rightarrow linear equation(s) for \tilde{u} (= linearized equation(s))
 - Check if all solutions of linearized equation(s) starting near 0 (= all small perturbations) remain near.

 \longrightarrow If yes (no): indicate that u_e is stable (unstable).

4. Over time all physical systems tend to be at their stable equilibrium solutions! (... always small disturbances ...)

Aggregation of Amoeba

Background: Lack of food \rightarrow amoeba produce attractant and aggregate. Question:

Can onset of aggregation be caused by simple, uninteligent mechanism?

Model near onset of aggregation:

- Physical quantities: a(x, t), c(x, t) = amoeba, attractant densities; parameters
- Modelling (conservation+diffusion+production):

(1)
$$a_t = \frac{\partial}{\partial x} \Big(k a_x - l a c_x \Big), \quad c_t = D c_{xx} + q_1 a - q_2 c.$$

- Equilibrium points (=constant solutions): Constants (a_0, c_0) such that $q_1a_0 = q_2c_0$.
- Linearized equation around (a_0, c_0) : (linear stability) $a = a_0 + \tilde{a}, \quad c = c_0 + \tilde{c}; \quad \tilde{a}, \tilde{c} \text{ small}; \quad \text{drop small terms}$ (2) $\tilde{a}_t = \frac{\partial}{\partial x} \left(k \tilde{a}_x - l a_0 \tilde{c}_x \right), \quad \tilde{c}_t = D \tilde{c}_{xx} + q_1 \tilde{a} - q_2 \tilde{c}.$

Aggregation of Amoeba

(2)
$$\tilde{a}_t = \frac{\partial}{\partial x} \left(k \tilde{a}_x - l a_0 \tilde{c}_x \right), \qquad \tilde{c}_t = D \tilde{c}_{xx} + q_1 \tilde{a} - q_2 \tilde{c}.$$

• Particular solutions of (2): Fourier modes/eigenfunctions

$$(\tilde{a},\tilde{c})=e^{\alpha t}\cos(\beta x)(C_1,C_2)$$

solve (2) iff $\alpha^2 + b\alpha + c = 0$ for $b = k\beta^2 + D\beta^2 + q_2$ and $c = kq_2\beta^2 + kD\beta^4 - q_1la_0\beta^2$,

and then (C_1, C_2) satisfy two linear equations (last time).

Every $\beta \in \mathbb{R} \Rightarrow$ two real α , arbitrary small (C_1, C_2) and sol'ns (\tilde{a}, \tilde{c})

Stability of solutions of (2):

 (\tilde{a}, \tilde{c}) stable $\Leftrightarrow \ \alpha \leq 0 \ \Leftrightarrow \ c \geq 0 \ \Leftrightarrow \ | kD\beta^2 + kq_2 \geq q_1 la_0$

- Instability: $kq_2 < q_1 la_0$
 - \Rightarrow ($ilde{a}, ilde{c}$) unbounded (lpha> 0) for $eta\ll 1$ and $|C_1|,|C_2|\ll 1$
 - \Rightarrow (0,0) unstable equilibrium point of (2)
 - \Rightarrow (a₀, c₀) linearly unstable equilibrium point of (1)