
SHORT INTRODUCTION TO THE FINITE VOLUME METHOD

AND ITS IMPLEMENTATION IN MRST

1. Introduction to finite volume method

This is a very short introduction to finite volume methods. Finite volume meth-
ods are popular because of their flexibility and the fact that they are based on the
same simple physical principle as the equations they aim to approximate. Let us
consider three types of equations. The first type is a hyperbolic conservation law:

(1)
∂u

∂t
+∇ · (F (u)) = 0,

where the flux F (u) is a function of the unknown u. The second type is a diffusion
equation:

(2)
∂u

∂t
= ∇ · (D∇u),

where the diffusion coefficient D depend on x. We can rewrite (2) in the same form
as (1) but, in this case, the flux F depends linearly on the gradient,

(3) F = −D∇u.
The third type is an elliptic equation which corresponds to the diffusion equation
at equilibrium,

(4) ∇ · (D∇u) = 0.

Let us start by setting up a discretization for a flux problem where, given a source
term, we try to compute the corresponding flux based on a conservation principle.
We look at the equation

(5) ∇ ·F = q.

After integrating (5) over an arbitrary domain Ω, we obtain

(6)

ˆ
Ω

q(x) dx−
ˆ
∂Ω

F ·ndS = 0,

which - in words - means that, for the amount of the quantity we are considering
here (it can be many things: mass, heat, momentum ...), we have

(7)

{
Local

production
in Ω

}
−
{

What
comes out

}
+
{

What
comes in

}
= 0

Now, let us proceed with a discrete analog. We consider an unstructured mesh,
that is, a mesh where the cells are polygons with an arbitrary number of faces. In
Figure 1, we plot two neighboring cells and ni,j denotes the exterior (with respect
to cell Ωi) normal of the face between cells Ωi and Ωj . For the cell Ωi, we introduce
the average source term qi, defined as

qi =

ˆ
Ωi

q(x) dx.

Integrating (5), as we did to obtain (6), over the domain Ωi, we obtain

(8)
∑

j∈N(i)

ˆ
∂Ωi,j

F ·ni,j dS = qi.
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Figure 1. Two neighboring cells of an unstructured mesh.

Here, N(i) denotes the index of the neighboring cells of Ωi and ∂Ωi,j denotes the
intersection between Ωi and Ωj . Now, we have to define a way to approximate
the integrals in (8). This will be done in different ways but we end up with an
numerical flux Fi,j on the face ∂Ωi, j, which approximate the integrated flux on the
face, namely,

(9) Fi,j ≈
ˆ
∂Ωi,j

F ·ni,j dS.

After rewriting (8), we obtain

(10)
∑

j∈N(i)

Fi,j = qi.

For (10), the summary given by (7) is as relevant as before. Let us apply the
method to the elliptic equation (4). We decompose the equation in two,

(11)

{∇ ·F = 0

F = −D∇u.

The discretization of the first equation in (25) follows from (10) and we have

(12)
∑

j∈N(i)

Fi,j = 0.

We have to choose an approximation for the numerical fluxes Fi,j , as defined by
(9), which in this case is

(13) Fi,j ≈ −
ˆ
∂Ωi,j

D∇u ·ni,j dS.

In reservoir simulation, it is common to use a two point flux approximation (TPFA),
which is the simplest approximation one can consider. This approximation is given
by a single interface coefficient depending on the permeability (which corresponds
to D in the notation introduced here) and on the geometry. This coefficient is called
the transmissibility and is defined such that

(14) Fi,j = −Ti,j(uj − ui) ≈ −
ˆ
∂Ωi,j

D∇u ·ndS

Here, ui and uj are average values on cells, that is,

(15) ui =
1

V (Ωi)

ˆ
Ωi

u dx,



SHORT INTRODUCTION TO THE FINITE VOLUME METHOD AND ITS IMPLEMENTATION IN MRST3

where V (Ωi) denotes the volume of the cell Ωi. The numerical scheme defined by

(16)


∑

j∈N(i)

Fi,j = 0

Fi,j = −Ti,j(uj − ui),
which we can rewrite in the compact form

(17) −
∑

j∈N(i)

Ti,j(uj − ui) = 0

is thus a finite volume approximation of the elliptic equation (4). To solve the dif-
fusion equation (2), we have to discretize in time. We consider a time discretization
parameter ∆t and set tn = n∆t. First we integrate (2) over a cell Ωi and obtain

(18)

ˆ
Ωi

∂u

∂t
dx =

∑
j∈N(i)

Fi,j ,

where Fi,j denote the numerical fluxes as introduced earlier. Then, we make a first
order approximation of the left-hand side in (18),

(19)

ˆ
Ωi

∂u

∂t
dx ≈ V (Ωi)

un+1
i − uni

∆t
,

where

(20) uni =

ˆ
Ωi

u(tn, x) dx.

For stability reason, which we do not develop here, the right-hand side in (18) has
to be evaluated at time n+ 1 (we need an implicit scheme). Then using, the TPFA
approximation, we get the following scheme

(21)


un+1
i − uni =

∆t

V (Ωi)

∑
j∈N(i)

Fn+1
i,j ,

Fn+1
i,j = −Ti,j(un+1

i − unj ).

A finite different volume formulation for the conservation law (1) can be derived
using the same principle. The difficulty in this case is that the solutions of (1)
are typically discontinuous and the choice of the numerical flux becomes a highly
nontrivial question.

2. Implementation in MRST

In this section, we describe briefly a finite volume discretization on unstructured
grid for the Poisson equation

(22) −∇ · (K(x)∇p) = q,

where q is a source term. The grid structure in MRST consists of three objects:
The cells, the faces and the nodes. Each cell corresponds to a set of faces and
each face to a set of edges, which are determined by the nodes. Each object has
given geometrical properties (volume, areas, centroids). Let us denote by nc and
nf , the number of cells and faces, respectively. There are two mappings, which
determine the topology and which will be particularly used. The first one is given
by N : {1, . . . , nc} → {0, 1}nf and maps a cell to the set of faces which constitute
this cell. The second one consists in fact of two mappings which, for a given face,
give the corresponding neighboring cells, N1, N2 : {1, . . . , nf} → {1, . . . , nc}. Let
us now construct the discrete versions of the divergence and grad operators, which
we denote div and grad . The mapping div is a linear mapping from faces to cells.
We consider a discrete flux u ∈ Rnf . For a face f , the orientation of the flux u[f ] is
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from N1(f) to N2(f). Hence, the total amount of matter leaving the cell c is given
by

(23) div(u)[c] =
∑

f∈N(c)

1{c=N1(f)}u[f ]−
∑

f∈N(c)

1{c=N2(f)}u[f ].

The grad mapping maps Rnc to Rnf and it is defined as

(24) grad(p)[f ] = p[N2(f)]− p[N1(f)],

for any p ∈ Rnc . Until now, the boundary conditions have been ignored. They are
introduced by considering external faces and extending the mappings N1 and N2

to Sc ∪ {0} so that, if a given face f satisfies N1(f) = 0 or N2(f) = 0 then it is
external. Note that the grad operator only defines values on internal faces. We
rewrite (22) in a mixed form

∇ ·u = q(25a)

u = −K(x)∇p.(25b)

The vector u ∈ Rnf is a discrete approximation of the flux on faces. Given f ∈ Sf ,
we have

u[f ] ≈
ˆ
Af

u(x) ·nf ds,

where nf is the normal to the face f , where the orientation is given by the grid.
The relation between the discrete pressure p ∈ Rnc and the discrete flux is given
by a two point flux approximation,

(26) u[f ] = −T [f ] grad(p)[f ] ≈ −
ˆ
Af

K(x)∇p ·nf dS,

where T [f ] denotes the transmissibility of the face f . Hence, the discretization of
(25) is

div(u) = q(27a)

u = −T grad(p).(27b)

The multiplication in (27b) holds element-wise. Let us consider a two phase model
and, for each phase α ∈ {w, o}, the mass conservation equation

(28)
∂(φραsα)

∂t
−∇ · (ραλα(sα)K(x)∇pα) = 0.

For the simplicity of the presentation, we assume here that the fluids are incom-
pressible. We discretize the saturations as a vector sα ∈ Rnc . We have to discretize
the flux uα = −λα(sα)K(x)∇pα. To do so, we need to compute a face valued
mobility vector λfα ∈ Rnf . Then, we define, for each face f ∈ Sf ,

(29) uα[f ] = −λfα[f ]T [f ] grad(p)[f ]

and an implicit scheme for (28) is given by

(30)
φ

∆t
(sn+1
α − snα) + div(un+1

α ) = 0.

To determine the face valued mobility, we use an upwind approximation, that is,
we set

(31) λfα[f ] =

{
λα(sα[N1(f)]) if uα[f ] > 0,

λα(sα[N2(f)]) otherwise .
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