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Project 1 : Modeling of synaptic transmission

I Signal transmission in a neuron

I Neurons are not hard-wired. Hypothesis defended by Fridtjof Nansen
and formulated by Santiago Ramón y Cajal.

I 1011 neurons, 1014 synapses
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Synapse

I Synaptic cleft, pre/post-synaptic terminal

I Neurotransmitters

I Receptors

Example of neurotransmitters: dopamine, serotonin, noradrenaline,
adrenaline.
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Stochastic processes

The diffusion and reaction mechanisms are stochastic processes.

I Random walk or Brownian motion for the neurotransmitter
molecules.

I Receptor binding
R + N −−⇀↽−− R−N.

The probability that a receptor R and neuron N reacts to bind
together is related to the distance between the two and the time
they remain close.
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Concentration and expected values
I Brownian motion and diffusion equation.

I Let X(t) be the trajectory of a particle. We define the transition
function

φ∆t(x, y) = P [X(t+ ∆t) = y|X(t) = x]

or

φ∆t(x, y) = lim
ε→0

1

2ε
P [X(t+ ∆t) ∈ [y − ε, y + ε]|X(t) ∈ [x− ε, x+ ε]] .

Let f(t, x) be the probability density that the particle is at x in t,

f(t, x) = lim
ε→0

1

2ε
P [X(t) ∈ [x− ε, x+ ε]] .

Morally speaking, we have

P [X(t+ ∆t) = x] =
∑
y

P [X(t+ ∆t) = x|X(t) = y]P [X(t) = y] .

We can show that

f(t+ ∆t, x) =

∫ ∞
−∞

φ∆t(x, y)f(t, y) dy.
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End of proof
We assume

I Translation invariance: φ∆t(x, y) = φ∆t(y − x)
I Isotropy: φ∆t(z) = φ∆t(‖z‖) so that

∫
zφ∆t(z) dz = 0

I Brownian motion scaling

φ∆t(z) =
1√
∆t

φ1(
z√
∆t

)

∫ ∞
−∞

φ∆t(x− y)f(t, y) dy =

∫ ∞
−∞

φ∆t(y)f(t, x− y) dy

=

∫ ∞
−∞

φ∆t(y)(f(t, x)− ∂f

∂x
(t, x)y +

1

2

∂2f

∂x2
(t, x)y2 + . . .) dy

Hence,

f(t, x) + ∆t
∂f

∂t
+ . . . = f(t, x) + ∆tα2 ∂

2f

∂x2
+ . . . .

where
∫∞
−∞ φ(z)z2 dz = 2α2 and we obtain the diffusion equation:

∂f

∂t
= α2 ∂

2f

∂x2
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Chemical reactions
I Probability to find one or more particle in a control volume ∆V is

equal to
c∆V as ∆V → 0

I Chemical reaction in fixed tank.

A + B −−→ C

For a particle A at a given place, we assume that the probability p
that it reacts with a particle B in a period ∆t is given by

p = α
Va
V

∆t+ o(∆t)

where V is the total volume, Va is an interaction volume and α
denotes the probability that, once the particle are close enough, the
reaction effectively takes place. We can prove that the expectancies
for the concentrations solve the equations

d[C]

dt
= −d[A]

dt
= −d[B]

dt
= [A][B]

where k is the kinetic reaction constant.
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Binding process on the membrane

The probability that N and R react depends on

I Probability that N comes close to R.

I Probability that R is free

You may want to consider a receptor density on the membrane (in
mol/m2).
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Main questions

Derive the modeling equations. Propose a numerical scheme to solve the
equations. Propose a geometrical model for the synapse. Implement a
numerical solver.

Application: Estimate the time for a signal to be transmitted. To do so,
you may consider the equilibrium state for the system in the case where
the synaptic cleft is confined. Such equilibrium state yields the maximum
number of receptors that in practice will be bound.
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Follow-up question 1: Geometrical reduction

The intercellular space is very thin compared to the characteristic size of
the cells. We want to exploit this fact and model the intercellular space
as a 2-dimensional surface. By this geometrical reduction, we hope to
increase the computation speed. It could be useful as the geometry of
the intercellular space is typically very complex
How this reduction modify the modeling equations? Following the same
steps as in the 3-dimensional case, implement a numerical solver for this
case.



Follow-up question 2: Clearance of neurotransmitters
I The synaptic cleft need to cleared from neurotransmitters before a

new signal can be transmitted.

I Glia cells transform neurotransmitters into an inactive form.

T + N −−⇀↽−− T−N −−→ Ninactive,

I Estimate the clearance time. Estimate the probability of synaptic
cross-talk.
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Follow-up question 3: Coupling with flow

The intercellular space is filled with intercellular fluid. We want to study
the effects of an underlying moving fluid on synaptic transmission. Derive
the governing equations in this case and try to solve them.

Application: Estimate the influence of an underlying flow for synaptic
cross-talk.



Project 2: Microbial Enhanced Oil Recovery (MEOR)

I Primary and secondary oil recovery

I Between 50% and 70% of the oil remains in place.

I Enhanced Oil Recovery (EOR): More advanced technologies to
increase oil recovery.
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Water channels

I Water flows in highest permeable regions and let large region of
reservoir unswept.

I EOR strategy: Diverge water from highly permeable regions.
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Porous media flow

For incompressible single phase flow, we have essentially two parameters

I porosity

I permeability



Fluid flow equations
I Mass conservation equation

∂ρ

∂t
+∇ · (ρu) = 0

I Momentum equation (Navier-Stokes)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∆u + ρg

I Kinetic forces: 1
2

∫
ρ ‖u‖2 dxdt

I potential, elastic forces: 1
2

∫
ω(ρ) dxdt

I viscous forces: 1
2
µ
∫
‖∇u‖2 dxdt

I External volumetric forces

I If the fluid is incompressible,

∇ ·u = 0,

If the fluid is compressible,

p = p(ρ) (Legendre transform of ω.)
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Euler and Stokes equation

I If we neglect the viscous forces, we obtain the Euler equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p

I If we neglect the kinetic forces, we obtain the Stokes equation

−∇p+ µ∆u = 0

I In porous media, we use Stokes approximation.

I We cannot solve the equations at a pore level but there are large
small scale velocity oscillation in a porous media.
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Darcy’s law
I Poisefeuille flow

I The analytical solution of the
Stokes equations can be computed
and we obtain that the gradient of
P is constant, the velocity profile is
a parabola, and

∆P

∆x
=

8µQ

πr4

Letting u = Q
πr2 (average flux), we get u = − r2

8µ∇P .

I Darcy law:

u = − 1

µ
K∇P,

where K is the permeability tensor.

I Such generalization can be proved to hold in general
(homogenization)

I Viscous energy is now µ
2

∫
1
K ‖u‖

2
dxdt (instead of µ

2

∫
‖u‖2 dxdt).
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Porous media equation

I The porous media equations for an incompressible single phase are
given by the mass conservation equation

∂φ

∂t
−∇ ·u = 0

and the Darcy’s law

u = − 1

µ
K∇P.



Microbial activity in the reservoir

I There exist stains of microbes which produce
I biosurfactants (decrease surface tension),
I biopolymers (improves mobility ratio),
I biomass (clugging of high permeability region),
I acids, solvents (increase permeability),
I gases (increase pressure).

at reservoir conditions.

I MEOR: Add microbes, or stimulate microbes in place, to enhance oil
recovery.
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Main question (1)

I Population model without flow:

We first focus on the microbial activity, assuming that the substrate
where the microbes live is immobile. We need a population model
for the microbes. Derive such model. The model should account for
the following observations: Microbes reproduce themselves and
eventually die. Their reproduction rate depends on the availability of
nutrients and they will usually compete for nutrients. We may
consider one or several, possibly competing, species.

I Parameters:
I population size N ,
I concentration of nutrients ci,
I reproduction rate, death rate.

I Find a model with an equilibrium.
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Main question (2)

I Modeling of microbial accumulation:

The microbes can produce bio-films which enable them to stick to
the rock and colonize a region. This is the origin of clogging, whose
consequence is a reduction in porosity. Propose a simple model for
bio-film production and its effect on porosity.



Main question (3)

I Couple

Derive the equations for the transport of microbes, nutrients.
Include in the model the production of bio-films and accumulation of
microbes which modifies the porosity and the permeability.

I Relation between porosity and permeability: The Kozeny-Carman
equation

K =
Φ2
sD

2
p

180

φ3

(1− φ)2

where Φs is the sphericity and Dp the diameter of the rock particles.

I Derive a numerical scheme for the equations and implement it.



Main question (3)

I Couple

Derive the equations for the transport of microbes, nutrients.
Include in the model the production of bio-films and accumulation of
microbes which modifies the porosity and the permeability.

I Relation between porosity and permeability: The Kozeny-Carman
equation

K =
Φ2
sD

2
p

180

φ3

(1− φ)2

where Φs is the sphericity and Dp the diameter of the rock particles.

I Derive a numerical scheme for the equations and implement it.



Main question (3)

I Couple

Derive the equations for the transport of microbes, nutrients.
Include in the model the production of bio-films and accumulation of
microbes which modifies the porosity and the permeability.

I Relation between porosity and permeability: The Kozeny-Carman
equation

K =
Φ2
sD

2
p

180

φ3

(1− φ)2

where Φs is the sphericity and Dp the diameter of the rock particles.

I Derive a numerical scheme for the equations and implement it.



Main question (4) : Application

We add microbes to the water. The largest amount of microbes will then
be found in the region with highest water flow. Then, the microbes will
start producing bio-films which will reduce the permeability, favoring the
flow in the other regions of the reservoir. Check the feasibility of this
scenario.



Two-phases flow

I Water/oil volume fraction is the saturation sα (α = {w, o}),

sw + wo = 1.

I Linear transport

uα = − sα
µα
K∇p.

I Pore scale effects due to wettability and interfacial surface tension
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Capillary forces

I Oil remains trapped due to capillary forces.



Relative permeability

Corey relative permeability

krw(Sw) = k0
rws

Nw
wn ,

kro(Sw) = (1− Swn)No ,

Nw, No, k0
rw: parameters,

swn: normalized saturation,

Swn(Sw) =
Sw − Swi

1− Swi − Sor
,
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I Couplings



Questions

Consider a simple reservoir model with and quantify the effect of the
following parameters,

I concentration of nutrient injection,

I surfactant production rate of the microbes,

I surfactant parameters,

on the increase in oil recovery.



Questions

I Promising laboratory experiments are not confirmed on the field.

I Complex environment

I example of successful bacterial treatment against souring.

I Introduce in your model a parasite microbe

Application: Introduce two types of nutrients, type A and type B.
The nutrient A is used by both species and they compete for it. The
nutrient B is only used by the beneficial specie. By injecting nutrient
B, we favor the beneficial microbe. Quantify the benefit in increased
oil recovery.
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Matlab Reservoir Simulation Toolbox (MRST)

I Open source code for porous media developed at Sintef.

I Rapid prototyping

I Flexible grid structure
I Automatic differentiation
I Matlab framework

I Finite volume solvers (see note)

I Diffusion and transport solver available on course webpage.
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