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1 (Exersice 7 p. 204 in Lin and Segel)
For a small sphere falling under gravity in a viscous fluid, it is observed that the
speed of fall is (after a short time) a constant v. Let a, ρ1, ρ2, µ, and g represent
the radius and density of the sphere, the density and viscosity of the liquid, and the
gravitational acceleration, respectively.

(a) Using dimensional analysis with fundamental units of mass, length, and time,
show that

(1) v =
µ

ρ1a
φ

(
ρ21µ

−2a3g,
ρ2
ρ1

)
Use the fact that viscous stress (force/unit area) equals the product of µ and
the velocity gradient (derivative of velocity with respect to length).

(b) Since motion here is unaccelerated, we need not make use of the proportionality
of acceleration to force, and force can be treated as a separate fundamental unit.
Hence show that

(2) v = a2ρ1gµ
−1φ

(
ρ2
ρ1

)
.

Stokes derived the formula

(3) φ(x) =
2

9
(1− x)

a result of great utility. For example, it was used in the Millikan oil drop
experiment.1

2 (Exercise 8 page 205 from Lin and Segel)
Consider steady non turbulent incompressible flow of a liquid in a circular pipe.
The pressure difference ∆p between the two ends of the pipe should depend only
on its length L, radius R, and the maximum speed U of the fluid of viscosity µ
and density ρ. Show that according to dimensional analysis the situation can be
described equally well by either of the following equations:

∆p
1
2ρU

2
= φ

(
ρUR

µ
,
ρUL

µ

)
,

∆p
1
2ρU

2
= φ

(
ρUR

µ
,
L

R

)
.

1Millikan used oil drops to determine the elementary electric charge. The idea is to put small drops of
electrically charged oil between two horizontal charged plates and measure the electric force acting on the
oil drops.
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It is reasonable to suppose that when L
R is large, say L

R > 20, changing L
R should

have little effect on the answer. In this case the relation

(4)
∆p

1
2ρU

2
= φ

(
ρUR

µ

)
.

should hold to good accuracy. This illustrates the fact that physical reasoning some-
times shows how to choose the dimensionless parameters so that one of them can
be neglected. For more examples of this type of reasoning, see the valuable book of
Kline (1965), from which the present problem was adapted. Use [µ] = kg

m s .

3 (Problem 4.2.3 p. 54 in Krogstad)
A common mathematical model for the size of a population y∗(t∗) as a function of
time t∗ is described by the logistic equation

dy∗

dt∗
= ry∗

(
1− y∗

K

)
.

Here r is called the growth rate and K the sustainable capacity.

(a) Which scale is suitable for y∗?

(b) Determine a time scale when y∗ � K.

(c) Introduce these scales into the equation so that it becomes dimensionless (The
equation can easily be solved by inserting y = 1

u and solving for u).

4 A spherical bullet is dropped in a viscous Newtonian fluid in a container with depth
L. The bullet starts at a position x∗0 with initial velocity v∗0, and at time t∗ is at
position x∗(t∗). The bullet has mass M and radius r, the density of the fluid is ρ,
and the kinematic viscosity ν.

(a) Show by dimensional analysis that when the bullet has constant velocity v∗ the
friction force FD acting on the bullet is of the form

(5) FD = νρrv∗φ

(
v∗r

ν

)
.

(b) Assume that the function φ in (5) is given by φ(x) = k̄ for some constant k̄
and that (5) holds when the bullet accelerates, and use Newton’s second law to
model the fall of the bullet. 2

(c) Scale the equation you get in (b) in the case when friction is strong and the
bullet has constant velocity for most of the fall. Find appropriate values for
the scales X and T . Find the biggest coefficient and divide the equation by it.
Scale the initial conditions and find µ such that ẋ(0) = µ. You will find that
one of the terms in the equation is multiplied by a small parameter ε. Find ε
expressed by vl and vf .3

2The forces acting on the bullet are gravity FG = Mg, friction, and buoyancy FB = −M ρfluid

ρbullet
g.

3We have vl :=
Mg̃
k

is the equilibrium velocity, vf :=
√
Lg̃ is the free fall velocity, and v0 is the unscaled

initial velocity.
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(d) Simplify the equation by setting ε = 0. Solve and call the solution x0(t),
and find the corresponding unscaled solution x∗0(t

∗). What happens to the
initial conditions? Verify by differentiation that the exact solution of the bullet
problem is

(6) x∗(t∗) =
Mg̃

k
t∗ +

M

k

(
Mg̃

k
− v0

)(
e−

k
M
t∗ − 1

)
+ x∗(0).

What can you conclude after comparing x∗0(t
∗) with the exact solution x∗(t∗)?

(e) Sometimes the approximation φ(x) = k̄ is not good enough. Assume that
the function φ in (5) is given by the expression φ(x) = k1 + k2|x|, where the
absolute value comes from the fact that the friction force should reduce the
speed. Assume that dx∗

dt∗ (0) > 0, and use Newton’s second law to model the fall
of the bullet, and scale the equation assuming that

(7) M
X

T 2

d2x

dt2
∼ νρrk1

X

T

dx

dt
.

Show that if we use the scale X = M2g̃
(νρrk1)2

we get an equation of the form

(8) ẍ = 1− ẋ− ε(ẋ)2, x(0) = 0, ẋ(0) = u.

Assume that x(t) = x0(t) + εx1(t) + O(ε2), insert into (8) and find x0(t) and
x1(t).
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