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Loen 1905, 1936

Loen, Ramnefjellet in background

Two accidents: 1905, 1936
one million cubic meter block
800 meter high

70 meter high wave

vV v vy



Akneset (Storfjorden)

» Extensive monitoring
» approx. 54 million cubic meter
» 100m-900m
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Tsunami wave in fjords

» Three phases:
1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave
» Two main questions:
1. How long does it take for the wave to reach the
populated areas (10 minutes ...) ?
2. How high will the wave be when it reaches the shore?
» Active topic of research.
» Three types of work
» Modeling (mod) : Derive the equations. Identify the
determining parameters. Simplify the equations.
» Analytic (ana) : Solve analytically simple equation.
» Numerical (num) : Solve numerically more realistic
models.



Project plan

@ The model equations
© Reduction to a linear model
© Generation of the tsunami

@ Inundation



The geometry




Conservation laws

» Conservation of mass and momentum for mass point
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Conservation laws

» Conservation of mass and momentum for mass point

dm d
E = O, di (m’u) 0,

more precisely

dv
@ _y
"

» For a fluid (continuum) model, it becomes

dp
EJFV( pv) =0,

(915 +pv Vv =—-Vp—pg.

The forces are pressure and gravity.
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Irrotational flow

» We assume that the flow is irrotational,
V xv=0.
In this case there is no loop

» Proof: assume the opposite. Then along a closed curve
v, v = |v|t with |v] > 0.
We have

/v.dl:/yvutmz AN l
vy il

:/]v]dl >0
¥
and

/v-dl:/(va)-nds:O
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Irrotational flow (ctd)

» For an irrotational flow, there exists a function ¢, called
potential, such that
v=Vo¢

» Note that this prevents loop either:
0< [v-di= [ odi=o6(1) - 62(0) =0
Y Y

because v(0) = (1)
» For an incompressible fluid, mass conservation gives us
V-v=0.
Hence, ¢ satisfies the Laplace equation

Ap = 0.



Governing equation for irrotational flow

» The governing equations reduce to
A¢p =0,
9 |
81&

P — Patm

|V¢| + +gz=0.
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Governing equation for irrotational flow

» The governing equations reduce to

A¢ =0,
gf ~|Vol? —l—p—ppatm+gz:o.
» The boundary cond|t|ons.
Vo-n=0
at the bottom,
9

0:77t+v¢[77x;7)y7_1] and
at the top.

o |V¢! +gn=0

» Note that the conservation of momentum equation is
integrated. The equation for pressure decouples.



Laplace solver

» Implement mesh deformation and Laplace solver ...
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» Implement mesh deformation and Laplace solver ...

. ore use the one available on the course website.
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Laplace solver

» Implement mesh deformation and Laplace solver ...
» ... ore use the one available on the course website.

0 01 02 03 04 05 06 07 08 03 1

» Propose a numerical scheme for the potential equations.

10
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Linearized equations

» We undimensionalize the equations
» We neglect the nonlinear terms.

» We can apply superposition principle (matematikk 4)

Example: Heat equation
on an interval [0, L].

u(t,0) ; ug(gz, L)
u(0,x) = ug(x)
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Linearized equations

» We undimensionalize the equations
» We neglect the nonlinear terms.
» We can apply superposition principle (matematikk 4)

» Elementary solutions using

Example: Heat equation separation of variable

on an interval [0, L]. Un(t, ) = fu(t)gn ()

Uy =u . .
¢ e » General solutions using

u(t,0) = u(t, L) superposition principle
u(0,z) = up(x)
" u(t,z) = Zanun(t,:v).

n>0
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dispersion relation

» Plane wave

u(t,a:) _ eQﬂi(kxfwt)
where

k : wavelength,

w : frequency.
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dispersion relation

» Plane wave
u(t,a:) _ eQﬂ'l(kaifwt)

where
k : wavelength,
w : frequency.
» The dispersion relation is a relation between the
wavelength and the frequency: w(k)
» Example: Waves on a string,

T
w=k{| —.
i
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dispersion relation

>

Plane wave
U(t,$) _ eQﬂ’i(k:):fwt)
where
k : wavelength,
w : frequency.
The dispersion relation is a relation between the

wavelength and the frequency: w(k)
Example: Waves on a string,

T
w==FKi —.
i
Refraction
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Generation of the tsunami
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Generation of the tsunami

» Kinetic energy from the rock is transferred to the water.
» How much energy?

» From this value, how to set up the initial condition for the
wave equation?

13



Shallow water equation

» Assuming that
depth < typical wavelength
the potential equations are approximated at first order by
the shallow water equations,

ne+ (u(n+h)), =0,

1 2
Ut+ §U +T] :O,
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Shallow water equation

» Assuming that
depth < typical wavelength
the potential equations are approximated at first order by
the shallow water equations,

ne+ (u(n+h)), =0,

1 2
Ut+ §U +T] :O,

» System of conservation laws
» There exist V' (u,n), W(u,n) (Riemann invariants) such
that the equations become /ess coupled.

(u) +<F(u,n)) PN Vit MVe=0
n), \Gu,n)/, Wi+ AW, =0

14



run-up

» Let h, = a,

Vi+ MV =a
Wt+)\2Wx:a
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run-up

» Let h, = a,

Vi+ MV =a
Wt+)\2Wx:a

» If W,(0,z) = 0 initially, then W, (¢, ) = 0 for all time.

» Hence, we know W and the system reduces to a scalar
equation. We can use the method of characteristics to
solve it

» Implement a numerical scheme for well-balanced
conservation law (references are given) to solve the
equation.

» Example on GPU.
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General comments

» Ambitious project. Beware of your time.

» You are allowed - even encouraged - to explore different
ideas.

» For the evaluation, only bonus points. In particular, it
does not matter if parts of the assignment remain
unanswered.

» Keep the balance between

modeling - analytic - numerics.
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