Mathematical Modeling Project fall 2015

Loen 1905, 1936

Loen, Ramnefjellet in background

- Two accidents: 1905, 1936
- one million cubic meter block
- 800 meter high
- 70 meter high wave

Åkneset

Åkneset (Storfjorden)

- Extensive monitoring
- approx. 54 million cubic meter
- 100m-900m

Tsunami wave in fjords

- Three phases:

1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave

Tsunami wave in fjords

- Three phases:

1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave

- Two main questions:

Tsunami wave in fjords

- Three phases:

1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave

- Two main questions:

1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?

Tsunami wave in fjords

- Three phases:

1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave

- Two main questions:

1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?
2. How high will the wave be when it reaches the shore?

Tsunami wave in fjords

- Three phases:

1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave

- Two main questions:

1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?
2. How high will the wave be when it reaches the shore?

- Active topic of research.

Tsunami wave in fjords

- Three phases:

1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave

- Two main questions:

1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?
2. How high will the wave be when it reaches the shore?

- Active topic of research.
- Three types of work
- Modeling (mod) : Derive the equations. Identify the determining parameters. Simplify the equations.
- Analytic (ana) : Solve analytically simple equation.
- Numerical (num) : Solve numerically more realistic models.

Project plan

(1) The model equations
(2) Reduction to a linear model
(3) Generation of the tsunami
(4) Inundation

The geometry

Conservation laws

- Conservation of mass and momentum for mass point

$$
\frac{d m}{d t}=0, \quad \frac{d}{d t}(m \boldsymbol{v})=0
$$

more precisely

$$
m \frac{d \boldsymbol{v}}{d t}=\mathbf{f}
$$

Conservation laws

- Conservation of mass and momentum for mass point

$$
\frac{d m}{d t}=0, \quad \frac{d}{d t}(m \boldsymbol{v})=0
$$

more precisely

$$
m \frac{d \boldsymbol{v}}{d t}=\mathbf{f}
$$

- For a fluid (continuum) model, it becomes

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v}) & =0 \\
\rho \frac{\partial \boldsymbol{v}}{\partial t}+\rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} & =-\nabla p-\rho \boldsymbol{g}
\end{aligned}
$$

The forces are pressure and gravity.

Irrotational flow

- We assume that the flow is irrotational,

$$
\nabla \times \boldsymbol{v}=0
$$

In this case there is no loop

Irrotational flow

- We assume that the flow is irrotational,

$$
\nabla \times \boldsymbol{v}=0
$$

In this case there is no loop

- Proof: assume the opposite. Then along a closed curve $\gamma, \boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{t}$ with $|v|>0$.
We have

$$
\begin{aligned}
\int_{\gamma} \boldsymbol{v} \cdot d \boldsymbol{l} & =\int_{\gamma}|\boldsymbol{v}||\boldsymbol{t}|^{2} d l \\
& =\int_{\gamma}|\boldsymbol{v}| d l>0
\end{aligned}
$$

and
$\int_{\gamma} \boldsymbol{v} \cdot d \boldsymbol{l}=\int_{\Gamma}(\nabla \times \boldsymbol{v}) \cdot \boldsymbol{n} d s=0$

Irrotational flow (ctd)

- For an irrotational flow, there exists a function ϕ, called potential, such that

$$
\boldsymbol{v}=\nabla \phi
$$

Irrotational flow (ctd)

- For an irrotational flow, there exists a function ϕ, called potential, such that

$$
\boldsymbol{v}=\nabla \phi
$$

- Note that this prevents loop either:

$$
0<\int_{\gamma} \boldsymbol{v} \cdot d \boldsymbol{l}=\int_{\gamma} \nabla \phi \cdot d \boldsymbol{l}=\phi(\gamma(1))-\phi(\gamma(0))=0
$$

because $\gamma(0)=\gamma(1)$

Irrotational flow (ctd)

- For an irrotational flow, there exists a function ϕ, called potential, such that

$$
\boldsymbol{v}=\nabla \phi
$$

- Note that this prevents loop either:

$$
0<\int_{\gamma} \boldsymbol{v} \cdot d \boldsymbol{l}=\int_{\gamma} \nabla \phi \cdot d \boldsymbol{l}=\phi(\gamma(1))-\phi(\gamma(0))=0
$$

because $\gamma(0)=\gamma(1)$

- For an incompressible fluid, mass conservation gives us

$$
\nabla \cdot \boldsymbol{v}=0
$$

Hence, ϕ satisfies the Laplace equation

$$
\Delta \phi=0 .
$$

Governing equation for irrotational flow

- The governing equations reduce to

$$
\begin{aligned}
\Delta \phi & =0 \\
\frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}+\frac{p-p_{\mathrm{atm}}}{\rho}+g z & =0
\end{aligned}
$$

Governing equation for irrotational flow

- The governing equations reduce to

$$
\begin{aligned}
\Delta \phi & =0 \\
\frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}+\frac{p-p_{\mathrm{atm}}}{\rho}+g z & =0
\end{aligned}
$$

- The boundary conditions:

$$
\nabla \phi \cdot \boldsymbol{n}=0
$$

at the bottom,
$0=\eta_{t}+\nabla \phi \cdot\left[\eta_{x}, \eta_{y},-1\right] \quad$ and $\quad \frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}+g \eta=0$ at the top.

Governing equation for irrotational flow

- The governing equations reduce to

$$
\begin{aligned}
\Delta \phi & =0 \\
\frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}+\frac{p-p_{\mathrm{atm}}}{\rho}+g z & =0
\end{aligned}
$$

- The boundary conditions:

$$
\nabla \phi \cdot \boldsymbol{n}=0
$$

at the bottom,
$0=\eta_{t}+\nabla \phi \cdot\left[\eta_{x}, \eta_{y},-1\right] \quad$ and $\quad \frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}+g \eta=0$ at the top.

- Note that the conservation of momentum equation is integrated. The equation for pressure decouples.

Laplace solver

- Implement mesh deformation and Laplace solver ...

Laplace solver

- Implement mesh deformation and Laplace solver ...
- ... ore use the one available on the course website.

Laplace solver

- Implement mesh deformation and Laplace solver ...
- ... ore use the one available on the course website.

- Propose a numerical scheme for the potential equations.

Linearized equations

- We undimensionalize the equations

Linearized equations

- We undimensionalize the equations
- We neglect the nonlinear terms.

Linearized equations

- We undimensionalize the equations
- We neglect the nonlinear terms.
- We can apply superposition principle (matematikk 4)

Linearized equations

- We undimensionalize the equations
- We neglect the nonlinear terms.
- We can apply superposition principle (matematikk 4)

Example: Heat equation on an interval $[0, L]$.

$$
\begin{aligned}
u_{t} & =u_{x x} \\
u(t, 0) & =u(t, L) \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

Linearized equations

- We undimensionalize the equations
- We neglect the nonlinear terms.
- We can apply superposition principle (matematikk 4)
- Elementary solutions using

Example: Heat equation on an interval $[0, L]$. separation of variable

$$
u_{n}(t, x)=f_{n}(t) g_{n}(x)
$$

$$
\begin{aligned}
u_{t} & =u_{x x} \\
u(t, 0) & =u(t, L) \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

Linearized equations

- We undimensionalize the equations
- We neglect the nonlinear terms.
- We can apply superposition principle (matematikk 4)
- Elementary solutions using separation of variable

$$
u_{n}(t, x)=f_{n}(t) g_{n}(x)
$$

- General solutions using superposition principle

$$
u(t, x)=\sum_{n \geq 0} a_{n} u_{n}(t, x)
$$

dispersion relation

- Plane wave

$$
u(t, x)=e^{2 \pi i(k x-\omega t)}
$$

where
k : wavelength,
ω : frequency.

dispersion relation

- Plane wave

$$
u(t, x)=e^{2 \pi i(k x-\omega t)}
$$

where
k : wavelength,
ω : frequency.

- The dispersion relation is a relation between the wavelength and the frequency: $\omega(k)$

dispersion relation

- Plane wave

$$
u(t, x)=e^{2 \pi i(k x-\omega t)}
$$

where
k : wavelength,
ω : frequency.

- The dispersion relation is a relation between the wavelength and the frequency: $\omega(k)$
- Example: Waves on a string,

$$
\omega=k \sqrt{\frac{T}{\mu}}
$$

dispersion relation

- Plane wave

$$
u(t, x)=e^{2 \pi i(k x-\omega t)}
$$

where
k : wavelength,
ω : frequency.

- The dispersion relation is a relation between the wavelength and the frequency: $\omega(k)$
- Example: Waves on a string,

$$
\omega=k \sqrt{\frac{T}{\mu}}
$$

- Refraction

Generation of the tsunami

- Kinetic energy from the rock is transferred to the water.

Generation of the tsunami

- Kinetic energy from the rock is transferred to the water.
- How much energy?

Generation of the tsunami

- Kinetic energy from the rock is transferred to the water.
- How much energy?
- From this value, how to set up the initial condition for the wave equation?

Shallow water equation

- Assuming that depth <<typical wavelength
the potential equations are approximated at first order by the shallow water equations,

$$
\begin{aligned}
\eta_{t}+(u(\eta+h))_{x} & =0 \\
u_{t}+\left(\frac{1}{2} u^{2}+\eta\right)_{x} & =0
\end{aligned}
$$

Shallow water equation

- Assuming that depth <<typical wavelength
the potential equations are approximated at first order by the shallow water equations,

$$
\begin{aligned}
\eta_{t}+(u(\eta+h))_{x} & =0 \\
u_{t}+\left(\frac{1}{2} u^{2}+\eta\right)_{x} & =0
\end{aligned}
$$

- System of conservation laws

Shallow water equation

- Assuming that depth <<typical wavelength
the potential equations are approximated at first order by the shallow water equations,

$$
\begin{aligned}
\eta_{t}+(u(\eta+h))_{x} & =0 \\
u_{t}+\left(\frac{1}{2} u^{2}+\eta\right)_{x} & =0
\end{aligned}
$$

- System of conservation laws
- There exist $V(u, \eta), W(u, \eta)$ (Riemann invariants) such that the equations become less coupled.

$$
\binom{u}{\eta}_{t}+\binom{F(u, \eta)}{G(u, \eta)}_{x}=0 \Longleftrightarrow\left\{\begin{array}{r}
V_{t}+\lambda_{1} V_{x}=0 \\
W_{t}+\lambda_{2} W_{x}=0
\end{array}\right.
$$

run-up

- Let $h_{x}=a$,

$$
\begin{aligned}
V_{t}+\lambda_{1} V_{x} & =a \\
W_{t}+\lambda_{2} W_{x} & =a
\end{aligned}
$$

run-up

- Let $h_{x}=a$,

$$
\begin{aligned}
V_{t}+\lambda_{1} V_{x} & =a \\
W_{t}+\lambda_{2} W_{x} & =a
\end{aligned}
$$

- If $W_{x}(0, x)=0$ initially, then $W_{x}(t, x)=0$ for all time.

run-up

- Let $h_{x}=a$,

$$
\begin{array}{r}
V_{t}+\lambda_{1} V_{x}=a \\
W_{t}+\lambda_{2} W_{x}=a
\end{array}
$$

- If $W_{x}(0, x)=0$ initially, then $W_{x}(t, x)=0$ for all time.
- Hence, we know W and the system reduces to a scalar equation. We can use the method of characteristics to solve it

run-up

- Let $h_{x}=a$,

$$
\begin{aligned}
V_{t}+\lambda_{1} V_{x} & =a \\
W_{t}+\lambda_{2} W_{x} & =a
\end{aligned}
$$

- If $W_{x}(0, x)=0$ initially, then $W_{x}(t, x)=0$ for all time.
- Hence, we know W and the system reduces to a scalar equation. We can use the method of characteristics to solve it
- Implement a numerical scheme for well-balanced conservation law (references are given) to solve the equation.

run-up

- Let $h_{x}=a$,

$$
\begin{aligned}
V_{t}+\lambda_{1} V_{x} & =a \\
W_{t}+\lambda_{2} W_{x} & =a
\end{aligned}
$$

- If $W_{x}(0, x)=0$ initially, then $W_{x}(t, x)=0$ for all time.
- Hence, we know W and the system reduces to a scalar equation. We can use the method of characteristics to solve it
- Implement a numerical scheme for well-balanced conservation law (references are given) to solve the equation.
- Example on GPU.

General comments

- Ambitious project. Beware of your time.

General comments

- Ambitious project. Beware of your time.
- You are allowed - even encouraged - to explore different ideas.

General comments

- Ambitious project. Beware of your time.
- You are allowed - even encouraged - to explore different ideas.
- For the evaluation, only bonus points.

General comments

- Ambitious project. Beware of your time.
- You are allowed - even encouraged - to explore different ideas.
- For the evaluation, only bonus points. In particular, it does not matter if parts of the assignment remain unanswered.

General comments

- Ambitious project. Beware of your time.
- You are allowed - even encouraged - to explore different ideas.
- For the evaluation, only bonus points. In particular, it does not matter if parts of the assignment remain unanswered.
- Keep the balance between
modeling - analytic - numerics.

