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Loen 1905, 1936

Loen, Ramnefjellet in background

I Two accidents: 1905, 1936
I one million cubic meter block
I 800 meter high
I 70 meter high wave
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Åkneset

Åkneset (Storfjorden)

I Extensive monitoring
I approx. 54 million cubic meter
I 100m-900m

2



Tsunami wave in fjords

I Three phases:

1. The creation of the tsunami wave
2. The propagation of the wave
3. The run-up of the wave

I Two main questions:

1. How long does it take for the wave to reach the
populated areas (10 minutes ...) ?

2. How high will the wave be when it reaches the shore?

I Active topic of research.
I Three types of work

I Modeling (mod) : Derive the equations. Identify the
determining parameters. Simplify the equations.

I Analytic (ana) : Solve analytically simple equation.
I Numerical (num) : Solve numerically more realistic

models.
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Project plan

1 The model equations

2 Reduction to a linear model

3 Generation of the tsunami

4 Inundation
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The geometry

x

z

h(x, y, t)

η(x, y, t)

5



Conservation laws

I Conservation of mass and momentum for mass point

dm

dt
= 0,

d

dt
(mv) = 0,

more precisely

m
dv

dt
= f .

I For a fluid (continuum) model, it becomes

∂ρ

∂t
+∇ · (ρv) = 0,

ρ
∂v

∂t
+ ρv · ∇v = −∇p− ρg.

The forces are pressure and gravity.
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Irrotational flow

I We assume that the flow is irrotational,

∇× v = 0.

In this case there is no loop

I Proof: assume the opposite. Then along a closed curve
γ, v = |v| t with |v| > 0.

We have∫
γ

v · dl =

∫
γ

|v| |t|2 dl

=

∫
γ

|v| dl > 0

and∫
γ

v ·dl =

∫
Γ

(∇×v) ·nds = 0

v

l

∇× v = 0
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Irrotational flow (ctd)

I For an irrotational flow, there exists a function φ, called
potential, such that

v = ∇φ

I Note that this prevents loop either:

0 <

∫
γ

v · dl =

∫
γ

∇φ · dl = φ(γ(1))− φ(γ(0)) = 0

because γ(0) = γ(1)
I For an incompressible fluid, mass conservation gives us

∇ · v = 0.

Hence, φ satisfies the Laplace equation

∆φ = 0.
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Governing equation for irrotational flow

I The governing equations reduce to

∆φ = 0,

∂φ

∂t
+

1

2
|∇φ|2 +

p− patm
ρ

+ gz = 0.

I The boundary conditions:

∇φ · n = 0

at the bottom,

0 = ηt+∇φ · [ηx, ηy,−1] and
∂φ

∂t
+

1

2
|∇φ|2 +gη = 0

at the top.

I Note that the conservation of momentum equation is
integrated. The equation for pressure decouples.

9



Governing equation for irrotational flow

I The governing equations reduce to

∆φ = 0,

∂φ

∂t
+

1

2
|∇φ|2 +

p− patm
ρ

+ gz = 0.

I The boundary conditions:

∇φ · n = 0

at the bottom,

0 = ηt+∇φ · [ηx, ηy,−1] and
∂φ

∂t
+

1

2
|∇φ|2 +gη = 0

at the top.

I Note that the conservation of momentum equation is
integrated. The equation for pressure decouples.

9



Governing equation for irrotational flow

I The governing equations reduce to

∆φ = 0,

∂φ

∂t
+

1

2
|∇φ|2 +

p− patm
ρ

+ gz = 0.

I The boundary conditions:

∇φ · n = 0

at the bottom,

0 = ηt+∇φ · [ηx, ηy,−1] and
∂φ

∂t
+

1

2
|∇φ|2 +gη = 0

at the top.

I Note that the conservation of momentum equation is
integrated. The equation for pressure decouples.

9



Laplace solver

I Implement mesh deformation and Laplace solver ...

I ... ore use the one available on the course website.

I Propose a numerical scheme for the potential equations.
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Linearized equations

I We undimensionalize the equations

I We neglect the nonlinear terms.

I We can apply superposition principle (matematikk 4)

Example: Heat equation
on an interval [0, L].

ut = uxx

u(t, 0) = u(t, L)

u(0, x) = u0(x)

I Elementary solutions using
separation of variable

un(t, x) = fn(t)gn(x)

I General solutions using
superposition principle

u(t, x) =
∑
n≥0

anun(t, x).
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dispersion relation

I Plane wave
u(t, x) = e2πi(kx−ωt)

where
k : wavelength,
ω : frequency.

I The dispersion relation is a relation between the
wavelength and the frequency: ω(k)

I Example: Waves on a string,

ω = k

√
T

µ
.

I Refraction
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Generation of the tsunami

I Kinetic energy from the rock is transferred to the water.

I How much energy?

I From this value, how to set up the initial condition for the
wave equation?
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Shallow water equation

I Assuming that

depth � typical wavelength

the potential equations are approximated at first order by
the shallow water equations,

ηt + (u(η + h))x = 0,

ut +

(
1

2
u2 + η

)
x

= 0,

I System of conservation laws
I There exist V (u, η), W (u, η) (Riemann invariants) such

that the equations become less coupled.(
u
η

)
t

+

(
F (u, η)
G(u, η)

)
x

= 0 ⇐⇒
{

Vt + λ1Vx = 0

Wt + λ2Wx = 0
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run-up

I Let hx = a,

Vt + λ1Vx = a

Wt + λ2Wx = a

I If Wx(0, x) = 0 initially, then Wx(t, x) = 0 for all time.

I Hence, we know W and the system reduces to a scalar
equation. We can use the method of characteristics to
solve it

I Implement a numerical scheme for well-balanced
conservation law (references are given) to solve the
equation.

I Example on GPU.
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General comments

I Ambitious project. Beware of your time.

I You are allowed - even encouraged - to explore different
ideas.

I For the evaluation, only bonus points.

In particular, it
does not matter if parts of the assignment remain
unanswered.

I Keep the balance between

modeling - analytic - numerics.
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