Mathematical Modeling Project fall 2015

Loen 1905, 1936

Loen, Ramnefjellet in background

- ▶ Two accidents: 1905, 1936
- one million cubic meter block
- 800 meter high
- 70 meter high wave

Åkneset (Storfjorden)

- Extensive monitoring
- ▶ approx. 54 million cubic meter
- ▶ 100m-900m

- ► Three phases:
 - 1. The creation of the tsunami wave
 - 2. The propagation of the wave
 - 3. The run-up of the wave

- ► Three phases:
 - 1. The creation of the tsunami wave
 - 2. The propagation of the wave
 - 3. The run-up of the wave
- Two main questions:

- Three phases:
 - 1. The creation of the tsunami wave
 - 2. The propagation of the wave
 - 3. The run-up of the wave
- Two main questions:
 - 1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?

- Three phases:
 - 1. The creation of the tsunami wave
 - 2. The propagation of the wave
 - 3. The run-up of the wave
- Two main questions:
 - 1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?
 - 2. How high will the wave be when it reaches the shore?

- Three phases:
 - 1. The creation of the tsunami wave
 - 2. The propagation of the wave
 - 3. The run-up of the wave
- Two main questions:
 - 1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?
 - 2. How high will the wave be when it reaches the shore?
- Active topic of research.

- Three phases:
 - 1. The creation of the tsunami wave
 - 2. The propagation of the wave
 - 3. The run-up of the wave
- Two main questions:
 - 1. How long does it take for the wave to reach the populated areas (10 minutes ...) ?
 - 2. How high will the wave be when it reaches the shore?
- Active topic of research.
- Three types of work
 - Modeling (mod) : Derive the equations. Identify the determining parameters. Simplify the equations.
 - Analytic (ana) : Solve analytically simple equation.
 - Numerical (num) : Solve numerically more realistic models.

Conservation laws

Conservation of mass and momentum for mass point

$$\frac{dm}{dt} = 0, \quad \frac{d}{dt}(m\boldsymbol{v}) = 0,$$

more precisely

$$m\frac{d\boldsymbol{v}}{dt} = \mathbf{f}.$$

Conservation laws

Conservation of mass and momentum for mass point

$$\frac{dm}{dt} = 0, \quad \frac{d}{dt}(m\boldsymbol{v}) = 0,$$

more precisely

$$m\frac{d\boldsymbol{v}}{dt} = \mathbf{f}.$$

► For a fluid (continuum) model, it becomes

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0, \\ \rho \frac{\partial \boldsymbol{v}}{\partial t} + \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} &= -\nabla p - \rho \boldsymbol{g}. \end{aligned}$$

The forces are pressure and gravity.

Irrotational flow

We assume that the flow is irrotational,

 $\nabla \times \boldsymbol{v} = 0.$

In this case there is no loop

Irrotational flow

We assume that the flow is irrotational,

$$\nabla \times \boldsymbol{v} = 0.$$

In this case there is no loop

▶ Proof: assume the opposite. Then along a closed curve γ , $\boldsymbol{v} = |\boldsymbol{v}| \boldsymbol{t}$ with |v| > 0.

We have

$$\int_{\gamma} \boldsymbol{v} \cdot d\boldsymbol{l} = \int_{\gamma} |\boldsymbol{v}| |\boldsymbol{t}|^2 dl$$

 $= \int_{\gamma} |\boldsymbol{v}| dl > 0$

and

$$\int_{\gamma} \boldsymbol{v} \cdot d\boldsymbol{l} = \int_{\Gamma} (\nabla \times \boldsymbol{v}) \cdot \boldsymbol{n} ds = 0$$

Irrotational flow (ctd)

 For an irrotational flow, there exists a function φ, called potential, such that

$$\boldsymbol{v} = \nabla \phi$$

Irrotational flow (ctd)

 For an irrotational flow, there exists a function φ, called potential, such that

$$\boldsymbol{v} = \nabla \phi$$

Note that this prevents loop either:

$$0 < \int_{\gamma} \boldsymbol{v} \cdot d\boldsymbol{l} = \int_{\gamma} \nabla \phi \cdot d\boldsymbol{l} = \phi(\gamma(1)) - \phi(\gamma(0)) = 0$$
 because $\gamma(0) = \gamma(1)$

Irrotational flow (ctd)

 For an irrotational flow, there exists a function φ, called potential, such that

$$\boldsymbol{v} = \nabla \phi$$

Note that this prevents loop either:

$$0 < \int_{\gamma} \boldsymbol{v} \cdot d\boldsymbol{l} = \int_{\gamma} \nabla \phi \cdot d\boldsymbol{l} = \phi(\gamma(1)) - \phi(\gamma(0)) = 0$$

because $\gamma(0)=\gamma(1)$

For an incompressible fluid, mass conservation gives us

$$\nabla \cdot \boldsymbol{v} = 0.$$

Hence, ϕ satisfies the Laplace equation

$$\Delta \phi = 0.$$

Governing equation for irrotational flow

The governing equations reduce to

$$\begin{split} \Delta \phi &= 0, \\ \frac{\partial \phi}{\partial t} + \frac{1}{2} \left| \nabla \phi \right|^2 + \frac{p - p_{\text{atm}}}{\rho} + gz = 0. \end{split}$$

Governing equation for irrotational flow

The governing equations reduce to

$$\begin{split} \Delta \phi &= 0, \\ \frac{\partial \phi}{\partial t} + \frac{1}{2} \left| \nabla \phi \right|^2 + \frac{p - p_{\text{atm}}}{\rho} + gz = 0. \end{split}$$

The boundary conditions:

$$\nabla \phi \cdot \boldsymbol{n} = 0$$

at the bottom,

$$0 = \eta_t +
abla \phi \cdot [\eta_x, \eta_y, -1]$$
 and $rac{\partial \phi}{\partial t} + rac{1}{2} |
abla \phi|^2 + g\eta = 0$ at the top.

0 1

Governing equation for irrotational flow

The governing equations reduce to

$$\begin{split} \Delta \phi &= 0, \\ \frac{\partial \phi}{\partial t} + \frac{1}{2} \left| \nabla \phi \right|^2 + \frac{p - p_{\text{atm}}}{\rho} + gz = 0. \end{split}$$

The boundary conditions:

$$abla \phi \cdot \boldsymbol{n} = 0$$

at the bottom,

$$0 = \eta_t + \nabla \phi \cdot [\eta_x, \eta_y, -1]$$
 and $\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^2 + g\eta = 0$
at the top.

 Note that the conservation of momentum equation is integrated. The equation for pressure decouples. ► Implement mesh deformation and Laplace solver ...

Laplace solver

- Implement mesh deformation and Laplace solver ...
- ... ore use the one available on the course website.

Laplace solver

- Implement mesh deformation and Laplace solver ...
- ... ore use the one available on the course website.

Propose a numerical scheme for the potential equations.

We undimensionalize the equations

- We undimensionalize the equations
- We neglect the nonlinear terms.

- We undimensionalize the equations
- We neglect the nonlinear terms.
- ▶ We can apply superposition principle (matematikk 4)

- We undimensionalize the equations
- We neglect the nonlinear terms.
- ▶ We can apply superposition principle (matematikk 4)

Example: Heat equation on an interval [0, L].

$$u_t = u_{xx}$$
$$u(t, 0) = u(t, L)$$
$$u(0, x) = u_0(x)$$

- We undimensionalize the equations
- We neglect the nonlinear terms.
- We can apply superposition principle (matematikk 4)

Example: Heat equation on an interval [0, L].

$$u_t = u_{xx}$$
$$u(t, 0) = u(t, L)$$
$$u(0, x) = u_0(x)$$

 Elementary solutions using separation of variable

$$u_n(t,x) = f_n(t)g_n(x)$$

- We undimensionalize the equations
- We neglect the nonlinear terms.
- We can apply superposition principle (matematikk 4)

Example: Heat equation on an interval [0, L].

$$u_t = u_{xx}$$
$$u(t, 0) = u(t, L)$$
$$u(0, x) = u_0(x)$$

 Elementary solutions using separation of variable

$$u_n(t,x) = f_n(t)g_n(x)$$

 General solutions using superposition principle

$$u(t,x) = \sum_{n \ge 0} a_n u_n(t,x).$$

Plane wave

$$u(t,x) = e^{2\pi i(kx - \omega t)}$$

where

k : wavelength, ω : frequency.

Plane wave

$$u(t,x) = e^{2\pi i(kx - \omega t)}$$

where

k : wavelength, ω : frequency.

The dispersion relation is a relation between the wavelength and the frequency: ω(k)

Plane wave

$$u(t,x) = e^{2\pi i(kx - \omega t)}$$

where

k : wavelength, ω : frequency.

- The dispersion relation is a relation between the wavelength and the frequency: ω(k)
- Example: Waves on a string,

$$\omega = k \sqrt{\frac{T}{\mu}}.$$

Plane wave

$$u(t,x) = e^{2\pi i(kx - \omega t)}$$

where

k : wavelength, ω : frequency.

- \blacktriangleright The dispersion relation is a relation between the wavelength and the frequency: $\omega(k)$
- Example: Waves on a string,

$$\omega = k \sqrt{\frac{T}{\mu}}.$$

► Kinetic energy from the rock is transferred to the water.

- ► Kinetic energy from the rock is transferred to the water.
- ► How much energy?

- ► Kinetic energy from the rock is transferred to the water.
- How much energy?
- From this value, how to set up the initial condition for the wave equation?

Shallow water equation

Assuming that

depth \ll typical wavelength the potential equations are approximated at first order by the $shallow\ water$ equations,

$$\eta_t + (u(\eta + h))_x = 0,$$

$$u_t + \left(\frac{1}{2}u^2 + \eta\right)_x = 0,$$

Shallow water equation

Assuming that

depth \ll typical wavelength the potential equations are approximated at first order by the $shallow\ water$ equations,

$$\eta_t + (u(\eta + h))_x = 0,$$

$$u_t + \left(\frac{1}{2}u^2 + \eta\right)_x = 0,$$

System of conservation laws

Shallow water equation

Assuming that

depth \ll typical wavelength the potential equations are approximated at first order by the shallow water equations,

$$\eta_t + (u(\eta + h))_x = 0,$$

$$u_t + \left(\frac{1}{2}u^2 + \eta\right)_x = 0,$$

- System of conservation laws
- ► There exist V(u, η), W(u, η) (Riemann invariants) such that the equations become *less* coupled.

$$\begin{pmatrix} u \\ \eta \end{pmatrix}_t + \begin{pmatrix} F(u,\eta) \\ G(u,\eta) \end{pmatrix}_x = 0 \iff \begin{cases} V_t + \lambda_1 V_x = 0 \\ W_t + \lambda_2 W_x = 0 \end{cases}$$

• Let
$$h_x = a$$
,

$$V_t + \lambda_1 V_x = a$$
$$W_t + \lambda_2 W_x = a$$

• Let
$$h_x = a$$
,

$$V_t + \lambda_1 V_x = a$$
$$W_t + \lambda_2 W_x = a$$

• If $W_x(0,x) = 0$ initially, then $W_x(t,x) = 0$ for all time.

• Let
$$h_x = a$$
,

$$V_t + \lambda_1 V_x = a$$
$$W_t + \lambda_2 W_x = a$$

- If $W_x(0,x) = 0$ initially, then $W_x(t,x) = 0$ for all time.
- Hence, we know W and the system reduces to a scalar equation. We can use the method of characteristics to solve it

• Let
$$h_x = a$$
,

$$V_t + \lambda_1 V_x = a$$
$$W_t + \lambda_2 W_x = a$$

- If $W_x(0,x) = 0$ initially, then $W_x(t,x) = 0$ for all time.
- Hence, we know W and the system reduces to a scalar equation. We can use the method of characteristics to solve it
- Implement a numerical scheme for well-balanced conservation law (references are given) to solve the equation.

• Let
$$h_x = a$$
,

$$V_t + \lambda_1 V_x = a$$
$$W_t + \lambda_2 W_x = a$$

- If $W_x(0,x) = 0$ initially, then $W_x(t,x) = 0$ for all time.
- Hence, we know W and the system reduces to a scalar equation. We can use the method of characteristics to solve it
- Implement a numerical scheme for well-balanced conservation law (references are given) to solve the equation.
- Example on GPU.

• Ambitious project. Beware of your time.

- Ambitious project. Beware of your time.
- You are allowed even encouraged to explore different ideas.

- Ambitious project. Beware of your time.
- You are allowed even encouraged to explore different ideas.
- ► For the evaluation, only *bonus* points.

- Ambitious project. Beware of your time.
- You are allowed even encouraged to explore different ideas.
- For the evaluation, only *bonus* points. In particular, it does not matter if parts of the assignment remain unanswered.

- Ambitious project. Beware of your time.
- You are allowed even encouraged to explore different ideas.
- For the evaluation, only *bonus* points. In particular, it does not matter if parts of the assignment remain unanswered.
- Keep the balance between

modeling - analytic - numerics.