
MIXED FORMULATION AND MIMETIC FINITE DIFFERENCE

The goal of this note is to introduce the mimetic finite difference method, which is a
convergent numerical method which can handle general grids (see [1] for a complete
reference). We will use it to solve the Poisson equation

(1) −∆p = h,

for some given source term h. We will follow a variational approach which brings
also some interesting insight into the equation.

1. Variational approaches for the Poisson equation

For the moment, we will assume Neumann boundary conditions, that is, ∇p ·n = 0
on the boundary ∂Ω of the domain Ω.

We consider the minimization problem

(2) min

(
1

2

ˆ
Ω

|∇p|2 dx+

ˆ
Ω

h(x)p(x) dx

)
.

A necessary condition for p(x) to be solution to (2) can be obtained using a varia-

tional approach. Let F (p) = 1
2

´
Ω
|∇p|2 dx+

´
Ω
h(x)p(x) dx. For any perturbation

function δp(x), the function ε 7→ F (p + εδp) admits a minimum at ε = 0. Hence,
we have

(3)
dF

dε |ε=0
=

ˆ
Ω

∇p · ∇δp dx+

ˆ
Ω

h(x)δp(x) dx = 0.

The perturbed function p + εδp has to satisfy the boundary condition. It implies
that ∇δp · n = 0 at the boundary of the domain. After integration by part, we
obtain that ˆ

Ω

(−∆p+ h(x))δp(x) dx = 0

for any δp. Hence, the solution to the minimization problem (2) is a solution to
(1).

In fact, there exists another minimization problem which gives rise to the Poisson
equation. In order to present it, we have first to rewrite the Poisson equation in a
mixed form. The mixed form is obtained by introducing the flux function v = −∇p
and rewriting (1) as

v = −∇p,(4a)

∇ · v = h.(4b)

The equations (4) are directly related to the minimization problem

(5a) min
1

2

ˆ
Ω

|v|2 dx

subject to the constraint

(5b) ∇ · v = h.

The integral in (5a) corresponds to an energy and the minimization problem (5) can
be interpreted as minimizing the energy given a conservation constraint (5b) (when
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2 MIMETIC FINITE DIFFERENCE

h = 0, the relation ∇ ·v = 0 corresponds to the conservation of the quantity which
is transported by the flux v). In order to see the relation between the problem (4)
and (5), we will use Lagrange multipliers, which is the standard approach to deal
with optimization problem with constraint. We recall some basic facts on Lagrange
multipliers in finite dimension. We consider the minimization problem

(6a) min f(x)

subject to the constraint

(6b) g(x) = 0.

Here, x ∈ Rn, f : Rn → R and g : Rn → Rm with typically m < n. A necessary
condition for x to be a solution to (6) is obtained by introducing the Lagrange
multiplier λ ∈ Rm and the augmented Lagrangian function

(7) L(x, λ) = f(x)− λT g(x).

Then, if x is a solution to (6), there exists λ ∈ Rm such that (x, λ) is a critical
point of L, that is,

(8)
∂L

∂x
(x, λ) = 0 and

∂L

∂λ
(x, λ) = 0.

The conditions (8) yields

(9) ∇f(x) = Dg(x)Tλ and g(x) = 0.

We use now the same approach for the infinite dimensional minimization problem
(5). We introduce the Lagrange multiplier p(x), which is now a function, and form
the augmented Lagrangian functional

(10) L(v, p) =
1

2

ˆ
Ω

|v|2 dx−
ˆ

Ω

p(x)(∇ · v − h(x)) dx

We compute the variation of L with respect to a perturbation δv. The boundary
condition is (v + εδv) · n = 0 for all ε, which implies δv · n = 0. We have

L(v + εδv, p) =
1

2

ˆ
Ω

|v + εδv|2 dx−
ˆ

Ω

p,∇ · (v + εδv − h) dx

= L(v, p) + ε

ˆ
Ω

v · δv dx− ε
ˆ

Ω

p∇ · δv dx+ o(ε)

= L(v, p) + ε

ˆ
Ω

(v +∇p) · δv dx+ o(ε),

after integration by part. A critical point (v, p) must therefore satisfy
´

Ω
(v+∇p) ·

δv dx = 0 for all perturbation function δv and therefore, we recover v = −∇p, that
is, (4a). In the literature ([2]), the minimization problems (5) and (2) are called
primal and dual problems, respectively.

2. Weak form and discretization

We consider the mixed formulation (4) and introduce the weak formulation. We
have that (v, p) solves (4) ifˆ

Ω

v · u dx+

ˆ
Ω

∇p · u dx = 0, for all u,(11a)

ˆ
Ω

(∇ · v)q dx =

ˆ
Ω

(∇ · h)q dx, for all q.(11b)

We can introduce the bilinear forms

(12) b(v,u) =

ˆ
Ω

v · u dx and c(u, p) =

ˆ
Ω

∇p · u dx
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and the equations (11) can be rewritten as

b(v,u) + c(u, p) = 0, for all u,(13a)

c(v, q) = e(q) for all q.(13b)

for a linear form e which is defined from the source function h. In order to simplify
the presentation, I have been careful not to introduce any functional space. Of
course, they are primordial in any analysis of the equations. In a finite element
method, we use consistent discretization of the functions entering (13) and the
discrete equations takes the form[

B C
CT 0

] [
u
p

]
=

[
0
E

]
where the matrix B and C are the discrete representations of the bilinear forms b
and c (we still denote by u and p the finite dimensional unknown).

3. Mimetic finite difference

Let us consider a partition of Ω. We denote by T the set of cells and F the set
of faces which delimit the cells. We can rewrite the minimization problem (5) as
finding the functions vK in each cell K which minimize

(14a) min
∑
K∈T

1

2

ˆ
K

|vK(x)|2 dx

subject to the constraints

(14b) ∇ · vK(x) = hK(x),

for x ∈ K and all K ∈ T and

(14c) vK(x) · nK,f + vK′(x) · nK′,f = 0,

for x ∈ f and all f ∈ Fint with f = K ∩K ′. Here, Fint denote the set of internal
faces. For a given cell K, we denote by FK the set of faces that belong to the cell K.
Equation (14c) expresses the continuity of the flux on the internal faces, the normal
nK,f is the outer normal of f with respect to the cell K, so that nK,f = −nK′,f .
Comparing (14) to (5), we observe that the minimization problem on one side
has been relaxed as we have now a set of functions as variables (vK) instead of a
single function v (more degrees of freedom). On the other side, we have the extra
constraint given by (14c). After introducing the Lagrange multiplier function π(x)
which takes value on the faces, the augmented Lagrangian for the problem (14) can
be written as

(15) L(v, p, π) =
∑
K∈T

(
1

2

ˆ
K

|vK(x)|2 dx−
ˆ
K

pK(x)(∇ · vK − hK) dx

)
+
∑

f∈Fint

ˆ
f

πf (x)(vK(x) · nK,f + vK′(x) · nK′,f ) dx

Let us consider the variation of L with respect to vK . It yields

(16)

ˆ
K

vK(x) · uK dx−
ˆ
K

pK∇ · uK dx+
∑

f∈F1
K

ˆ
f

πf (x)uK(x) · nK,f dx = 0,

for any function uK , where F1
K = FK ∩Fint. After integration by part, (16) yields

(17)

ˆ
K

(vK(x) +∇pK ·)uK dx+
∑

f∈F1
K

ˆ
f

(πf (x)− pK(x))uK(x) · nK,f dx = 0.
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By taking uK with compact support in K, we get that

(18) vK = −∇pK ,

as the last integral in (16) cancels. We plug (18) into (17) and, as uK can be chose
arbitrarily, we get

(19)
∑

f∈F1
K

ˆ
f

(πf (x)− pK(x))uK(x) · nK,f dx = 0.

Therefore, the Lagrange multiplier functions πf in fact correspond to the restriction
of pK(x) on the faces.

In a mimetic finite difference approach, we discretize these equations in the following
way. The discrete unknown variables are chosen to be the integrated flux value vK,f

on each side of each face,

vK,f ≈
ˆ
f

vK(x) · nK,f dx

The mimetic method is a finite volume method so that the divergence operator is
approximated by the sum of all the fluxes on the faces of a given cell,

(20) divK(vK) =
∑

f∈F1
K

vK,f .

It remains to approximate the energy functional on each cell K. Given our degrees
of freedom (face fluxes), it is naturally done by introducing a symmetric positive
matrix BK such that

(21)

ˆ
K

vK(x) · uK(x) dx ≈
∑

f∈F1
K

vK,fB
K
f,f ′uK,f ′ .

The method will be called mimetic if

• BK is invertible (stability condition),
• BK is exact for constant fluxes (consistency condition).

This later statement means that, when one of the flux is constant, say vK , the
approximation (21) becomes exact, that is, we have

(22)

ˆ
K

vK · uK(x) dx =
∑

f∈F1
K

vK,fB
K
f,f ′uK,f ′ .

for any constant vector vK and for any function uK(x) and, in (22),

vK,f ′ =

ˆ
f

vK · nK,f dx = |f | vK · nK,f and uK,f ′ =

ˆ
f

uK(x) · nK,f dx,

where |f | denotes the area of the face f . Then, it can be proven that any mimetic
method lead to a convergent scheme, see [3]. Given a face f , the neighboring cells
of the f are ordered and denoted by K1,f and K2,f . We introduce the operator R1,f

and R2,f which, when applied to v, return the values of vK1,f and vK2,f . Finally,
the discrete version of the minimization problem can be rewritten as

(23a) min
1

2

∑
K∈T

∑
f,f ′∈F1

K

vK,fB
K
f,f ′vK,f ′

subject to the constraint

(23b) divK(v) = h
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for all K ∈ T and

(23c) R1,f (v) +R2,f (v) = 0

for all f ∈ F . The augmented Lagrangian for (23) is given by

(24) L(v, p, π) =
1

2

∑
K∈T

∑
f,f ′∈F1

K

vK,fB
K
f,f ′vK,f ′ −

∑
K∈T

pK(divK(v)− hK)

+
∑
f∈F

πf (R1,f (v) +R2,f (v)).

The discrete equations are then obtained by computing the critical points of L. We
end up with a system of the form

(25)

 B C D
CT 0 0
DT 0 0

vp
π

 =

0
h
0

 .
Note that the sparsity and the symmetry of the matrix in (25) follows directly from
the fact that the variables p and π are Lagrangian multipliers. Moreover, since BK

are positive symmetric definite, we have that B inherits the same properties.

4. The Dirichlet boundary condition

Until now, we have used Neumann boundary condition. Let us consider the Dirich-
let condition

(26) p(x) = pdir(x) for x ∈ Γdir

where Γdir ⊂ ∂Ω, for a given function pdir. On Γneum = ∂Ω \ Γdir, we still impose
Neumann boundary conditions, v ·n = 0. To introduce this case using a variational
approach it is convenient to look at p as a pressure. Darcy’s law gives us that
v is proportional to the gradient of pressure and, for simplicity, we set v = ∇p.
The condition ∇ · v = 0 will then be equivalent to the conservation of mass in the
absence of source. The energy 1

2

´
Ω
|v|2 dx corresponds to the dissipative energy.

A pressure given at the boundary allows for a flux in and out of the domain. This
pressure force exerts some work which must be included in the energy balance of
the system. The power exerted is

(27)

ˆ
Γdir

pdir(x)v(x).n dx

The governing equations are thus obtained deriving the necessary condition for
obtaining the solution to the minimization problem

(28a) min

(
1

2

ˆ
Ω

|v|2 dx−
ˆ

Γdir

pdir(x)v(x) · n dx
)

subject to the constraint

(28b) ∇ · v = h.

The augmented Lagrangian functional for (28) is

L(v, p) =
1

2

ˆ
Ω

|v|2 dx−
ˆ

Γdir

pdir(x)v(x) · n dx−
ˆ

Ω

p(x)∇ · (v(x)) dx

We consider the variation with respect to v given by v + εδv. From the boundary
condition, we get that v · n = 0 for all x ∈ Γneum, which implies, as we have seen
before, implies a constraint on the perturbation functions, namely δv · n = 0 on
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Γneum. However, we can relax this constraint by adding yet another Lagrangian
multiplier, which we denote pneum, and consider the augmented Lagrangian

(29) L(v, p) =
1

2

ˆ
Ω

|v|2 dx−
ˆ

Γdir

pdir(x)v(x) · n dx

−
ˆ

Γneum

pneum(x)v(x) · n dx−
ˆ

Ω

p(x)∇ · (v(x)) dx

The variation with respect to v gives us

L(v + εδv, p) = L(v, p) + ε
(ˆ

Ω

v · δv dx−
ˆ

Γdir

pdir(x)δv(x) · n dx

−
ˆ

Γneum

pneum(x)δv(x) · n dx−
ˆ

Ω

p(x)∇ · (δv(x)) dx
)

+ o(ε)

= L(v, p) + ε
( ˆ

Ω

(v +∇p) · δv dx+

ˆ
Γdir

(p(x)− pdir(x))δv · n dx

+

ˆ
Γneum

(p(x)− pneum(x))δv · n dx
)

+ o(ε),

after integration by part. Hence, we must have

(30)

ˆ
Ω

(v +∇p) · δv dx+

ˆ
Γdir

(p− pdir)δv ·n dx+

ˆ
Γneum

(p− pneum)δv ·n dx = 0

for all δv. First, we choose δv with compact support and we get v = −∇p and the
first integral in (30) vanishes. Then, we can choose δv · n arbitrarily and get that
p = pdir on Γdir and p = pneum on Γneum. Finally, we obtain the equations

∇ · v = h and v = −∇p in Ω,(31)

v · n = 0 on ∂Ω \ Γdir,(32)

p = pdir on Γdir(33)

and pneum = p on Γneum but this last identity is only interesting when we will look
at the discretization. For the discrete equation the augmented Lagrangian is given
by

(34) L(v, p, π) =
1

2

∑
K∈T

∑
f,f ′∈F2

K

vK,fB
K
f,f ′vK,f ′ −

∑
K∈T

pK(divK(v)− hK)

−
∑

f∈Fdir

(K=Tf )

pdir,fvK,f −
∑

f∈Fneum

(K=Tf )

pneum,fvK,f +
∑

f∈Fint

πf (R1,f (v) +R2,f (v)).

Here, Tf denotes the neighboring cells of the face f . In the third and fourth sum
above, since f corresponds to a external face, the set Tf reduces to a single element.
Note that in (34), pdir is a known function while pneum is an unknown variables,
which will be equal to the pressure on the faces where the Neumann condition
holds.

5. Schur-Complement

We reduce the system using Schur-complements. We decouple p and π from v using
the following manipulation, B−1 0 0

−CTB−1 Id 0
−DTB−1 0 Id

 B C D
CT 0 0
DT 0 0

 =

Id B−1C B−1D
0 −CTB−1C −CTB−1D
0 −DTB−1C −DTB−1D
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Let us introduce Q, H, F , E defined as follows

Q =

[
H F
FT E

]
=

[
CTB−1C CTB−1D
DTB−1C DTB−1D

]
.

Note that Q, H and E are by definition symmetric because B is symmetric. We
can rewrite Q as

Q =

[
CT

DT

]
B−1

[
C D

]
,

which shows that the matrix Q is positive. We decouple π from p by the following
manipulation,[

Id 0
−FTH−1 Id

]
Q =

[
Id 0

−FTH−1 Id

] [
H F
FT E

]
=

[
H F
0 S

]
,

where
S = E − FTH−1F.

The matrix S is by definition symmetric. We have[
Id 0

−FTH−1 Id

]
Q

[
Id −H−1F
0 Id

]
=

[
H 0
0 S

]
.

Hence the positivity of Q implies the positivity of S. The initial system (25) can
thus be solved by first computing π given as the solution to

Sπ = FTH−1h.

Then p is computed by solving

Hp+ Fπ = −h
and, finally, v is computed by solving

Bv + Cp+Dπ = 0.

6. Summary

In the Matlab code based on MRST which is given on the website of the course,
the matrix B, C and D which appear in (25) are assembled. Therefore, the only
thing you have to understand in order to use the code is the structure of the data,
that is, the significance of the variable v, p and π. To do so, get acquainted with
the grid structure, by typing the command help grid_structure and looking at [4,
section 3.4]. Moreover, once the solution (v, p, π) of (25) is computed, we have the
following correspondences with respect to the solution p(x) of the initial problem
(1),

vK,f ≈
ˆ
f

∇p(x) · nK,f dx, pK ≈
1

|K|

ˆ
K

p(x) dx, πf ≈
1

|f |

ˆ
f

p(x) dx.
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