
Equilibrium points

1. Equilibrium point:
A constant solution ue of the problem (e.g. ODEs or PDEs)

2. Stable equilibrium point ue :
All solutions u(t) starting near ue , remain near ue for all t ≥ 0:

∀ε > 0 ∃δ > 0 s.t. |u(0)− ue | ≤ δ ⇒ |u(t)− ue | < ε ∀t > 0

3. Linear stability analysis for ue
1 set solution u = ue + ũ, |ũ| � 1 small perturbation

2 insert into equation, drop small(=non-linear) terms
−→ linear equation(s) for ũ (= linearized equation(s))

3 Check if all solutions of linearized equation(s) starting near 0
(= all small perturbations) remain near.
−→ If yes (no): indicate that ue is stable (unstable).

4. Over time all physical systems tend to be at their stable equilibrium
solutions! (... always small disturbances ...)
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Aggregation of Amoeba
Full discussion in Chapter 6 in Logan: Applied Mathematics (compendium)

Background:
Lack of food → amoeba produce attractant and aggregate.

Question:
Can onset of aggregation be caused by simple, uninteligent mechanism?

Model near onset of aggregation:

Physical quantities:
a(x , t), c(x , t) = amoeba, attractant densities; parameters

Conservation + attraction + diffusion + production:

at =
∂

∂x

(
kax − lacx

)
, ct = Dcxx + q1a− q2c .(1)

(Details in lectures and in compendium)
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Aggregation of Amoeba

Equilibrium points of (1):

= constant solutions of (1)

⇒ all constants (a0, c0) satisfying q1a0 = q2c0.

Linear stability analysis:

Linearize equation around (a0, c0):

a = a0 + ã, c = c0 + c̃ ; ã, c̃ small; drop small(nonlin) terms

ãt = kãxx − la0c̃xx , c̃t = Dc̃xx + q1ã− q2c̃ .(2)

Stability: (a0, c0) is stable / unstable by linear stability analysis

if ã, c̃ always remain small / do not remain small in all cases.
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Aggregation of Amoeba

Particular solutions/Fourier modes of (2): (≈ heat equations)

ã = C1e
αt cos(βx) and c̃ = C2e

αt cos(βx)(3)

solve (2) iff(
α+ kβ2 la0β

2

−q1 α+ Dβ2 + q2

)
︸ ︷︷ ︸

B

(
C1
C2

)
=

(
0
0

)
(4)

Analysis of (4):
Non-zero solutions ~C = (C1,C2) iff detB = 0

detB = 0 ⇔ α2 + bα+ c = 0 for

b = kβ2 + Dβ2 + q2 and c = kq2β
2 + kDβ4 − q1la0β

2.(5)

Solve for α:
α± = 1

2 (−b ±
√
b2 − 4c).

b2 − 4c = · · · ≥ 0 ⇒ α± ∈ R, (α− ≤ α+).
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Aggregation of Amoeba

Conclusions for (4):

(i) For very β ∈ R, there are real α± and solutions ~Cα±,β 6= 0 of (4).

(ii) For any s > 0, s ~Cα±,β also solves (4).

(iii) Hence for every β and ε > 0,

there is a solution ~Cβ of (4) with α = α+ and | ~Cβ | < ε

Special solutions/Fourier modes (3):

(a) (ã, c̃) := ~Cα±,βe
α±t cosβt bounded ⇔ α+ ≤ 0 ⇔ c ≥ 0

(b) If c < 0, then (ã1, c̃1) := ~Cβe
α+t cosβt unbounded, and

|ã1(0, x)|2 + |c̃1(x , 0)|2 = | ~Cβ |2 < ε2.
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Aggregation of Amoeba

(Linearized) stability of (a0, c0):

Stable when c ≥ 0 (all Fourier modes stable)

Unstable when c < 0 (ã1, c̃1 starts near, but blows up)

In terms of the parameters of the problem:

c ≥ 0 ⇔ k(Dβ2 + q2) ≥ q1la0, see (5)

Hence:
stable if kq2 ≥ q1la0 (⇒ c ≥ 0 for all β)

unstable if kq2 < q1la0 (⇒ c < 0 for β2 small enough)
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Aggregation of Amoeba – Conclusion

Parameters:
k diffusivity of amoeba a, q2 break down rate of c ,
q1 production rate of c , la0 attraction rate due to c .

Physical interpretation:

Enough food: kq2 ≥ q1la0

⇒ (All) equilibrium point(s) (a0, c0) stable

⇒ solutions tend over time to constant / uniform consentration.

Lack of food: kq2 < q1la0

⇒ (All) equilibrium point(s) (a0, c0) unstable.

⇒ solutions move away from constant / uniform consentration.

This is the onset of aggregation/lumping!
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