Equilibrium points

1. Equilibrium point:

A constant solution u_{e} of the problem (e.g. ODEs or PDEs)
2. Stable equilibrium point u_{e} :

All solutions $u(t)$ starting near u_{e}, remain near u_{e} for all $t \geq 0$:

$$
\forall \varepsilon>0 \exists \delta>0 \quad \text { s.t. } \quad\left|u(0)-u_{e}\right| \leq \delta \Rightarrow\left|u(t)-u_{e}\right|<\varepsilon \quad \forall t>0
$$

3. Linear stability analysis for u_{e}
(1) set solution $u=u_{e}+\tilde{u}, \quad|\tilde{u}| \ll 1$ small perturbation
(2) insert into equation, drop small(=non-linear) terms \longrightarrow linear equation(s) for $\tilde{u} \quad$ (= linearized equation(s))

- Check if all solutions of linearized equation(s) starting near 0 ($=$ all small perturbations) remain near. \longrightarrow If yes (no): indicate that u_{e} is stable (unstable).

4. Over time all physical systems tend to be at their stable equilibrium solutions! (... always small disturbances ...)

Aggregation of Amoeba

Background: Lack of food \rightarrow amoeba produce attractant and aggregate. Question:

Can onset of aggregation be caused by simple, uninteligent mechanism?

Model near onset of aggregation:

- Physical quantities:
$a(x, t), c(x, t)=$ amoeba, attractant densities; parameters
- Modelling (conservation+diffusion+production):

$$
\begin{equation*}
a_{t}=\frac{\partial}{\partial x}\left(k a_{x}-l a c_{x}\right), \quad c_{t}=D c_{x x}+q_{1} a-q_{2} c . \tag{1}
\end{equation*}
$$

- Equilibrium points (=constant solutions):

Constants (a_{0}, c_{0}) such that $q_{1} a_{0}=q_{2} c_{0}$.

- Linearized equation around (a_{0}, c_{0}): (linear stability)

$$
a=a_{0}+\tilde{a}, \quad c=c_{0}+\tilde{c} ; \quad \tilde{a}, \tilde{c} \text { small; drop small terms }
$$

$$
\begin{equation*}
\tilde{a}_{t}=\frac{\partial}{\partial x}\left(k \tilde{a}_{x}-l_{0} \tilde{c}_{x}\right), \quad \tilde{c}_{t}=D \tilde{c}_{x x}+q_{1} \tilde{a}-q_{2} \tilde{c} \tag{2}
\end{equation*}
$$

Aggregation of Amoeba

$$
\begin{equation*}
\tilde{a}_{t}=\frac{\partial}{\partial x}\left(k \tilde{a}_{x}-l_{0} \tilde{c}_{x}\right), \quad \tilde{c}_{t}=D \tilde{c}_{x x}+q_{1} \tilde{a}-q_{2} \tilde{c} \tag{2}
\end{equation*}
$$

- Particular solutions of (2): Fourier modes/eigenfunctions

$$
(\tilde{a}, \tilde{c})=e^{\alpha t} \cos (\beta x)\left(C_{1}, C_{2}\right)
$$

solve (2) iff $\alpha^{2}+b \alpha+c=0$ for

$$
b=k \beta^{2}+D \beta^{2}+q_{2} \quad \text { and } \quad c=k q_{2} \beta^{2}+k D \beta^{4}-q_{1} l a_{0} \beta^{2}
$$

and then $\left(C_{1}, C_{2}\right)$ satisfy two linear equations (last time).
Every $\beta \in \mathbb{R} \Rightarrow$ two real α, arbitrary small $\left(C_{1}, C_{2}\right)$ and sol'ns (\tilde{a}, \tilde{c})

- Stability of solutions of (2):

$$
(\tilde{a}, \tilde{c}) \text { stable } \Leftrightarrow \alpha \leq 0 \Leftrightarrow c \geq 0 \Leftrightarrow k D \beta^{2}+k q_{2} \geq q_{1} l_{0}
$$

- Instability: $k q_{2}<q_{1} / a_{0}$

$$
\begin{array}{ll}
\Rightarrow & (\tilde{a}, \tilde{c}) \text { unbounded }(\alpha>0) \text { for } \beta \ll 1 \text { and }\left|C_{1}\right|,\left|C_{2}\right| \ll 1 \\
\Rightarrow & (0,0) \text { unstable equilibrium point of }(2) \\
\Rightarrow & \left(a_{0}, c_{0}\right) \text { linearly unstable equilibrium point of }(1)
\end{array}
$$

