Improved kinetic theory of car traffic

1. Modified (scaled) car velocity

$$
\begin{equation*}
v(\rho)=1-\rho-\frac{\kappa}{\rho} \frac{\partial \rho}{\partial x} . \tag{1}
\end{equation*}
$$

Cars slow down to avoid shocks (where $\frac{\partial \rho}{\partial x} \rightarrow+\infty$).
2. New conservation law (check!):

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}-\frac{\partial}{\partial x}(\rho(1-\rho))=\kappa \frac{\partial^{2} \rho}{\partial x^{2}} \tag{2}
\end{equation*}
$$

Parabolic equation, smooth solution, shocks become smeared.
Less smearing for κ small since then $\frac{\partial \rho}{\partial t}-\frac{\partial}{\partial x}(\rho(1-\rho)) \approx 0$.
3. Traveling wave solution (smeared shock): $\rho(x, t)=u(x-a t)$ Insert into (2) $+\lim _{x \rightarrow \pm \infty} \rho(x, t)=\rho^{ \pm}+\lim _{x \rightarrow \pm \infty} \rho_{x}(x, t)=0$ $\underset{\rho_{-}<\rho_{+}}{\Rightarrow}$ ODE problem for u, a with solution $a=1-\rho^{+}-\rho^{-}$and

$$
\rho(x, t)=\rho^{-}+\left(\rho^{+}-\rho^{-}\right) \frac{1}{1+e^{\frac{\rho^{-}-\rho^{+}}{\kappa}}(x-a t)}
$$

