Summary of Dimensional Analysis

"Physical relations are (equivalent to) relations between dimensionless combinations"

Recipe:

1. Choose relevant physical quantities R_{1}, \ldots, R_{m}.

Conjecture there is some relation $\Phi\left(R_{1}, \ldots, R_{m}\right)=0$.
2. Find dimension matrix $A(n \times m)$ and $r=\operatorname{rank} A$.
3. Select r core variables.

Find $m-r$ dimensionless combinations $\pi_{1}, \ldots, \pi_{m-r}$.
4. Pi-theorem: $\Phi\left(R_{1}, \ldots, R_{m}\right)=0 \Leftrightarrow \Psi\left(\pi_{1}, \ldots, \pi_{m-r}\right)=0$
5. Specify ψ if possible...

Summary of Dimensional Analysis

Result:

A dimensionally consistent model $\Psi\left(\pi_{1}, \ldots, \pi_{m-r}\right)=0$

OBS: Any Ψ gives a dimensionally consistent model!

Advantages:

- Easy to obtain simple models
- Minimize number of variables

Summary of Dimensional Analysis

Questions:

- How to select R_{j} ?
- Many possible π_{j} 's !?
- Ψ is unknown !?

Partial answers:

- Choices based on: physical insight and/or simplicity
- Any relevant fundamental unit must occur in at least $2 R_{j}$'s
- $\pi_{j}=\frac{R_{r+j}}{R_{1}^{\bullet} \cdots R_{r}^{\bullet}} /$ well-known combinations $(R e, \ldots)$
- Ψ... need extra information/observations ...

