Summary of Dimensional Analysis "Physical relations are (equivalent to) relations between dimensionless combinations" ### Recipe: - Choose relevant physical quantities R₁,..., R_m. Conjecture there is some relation Φ(R₁,..., R_m) = 0. - 2. Find dimension matrix A ($n \times m$) and $r = \operatorname{rank} A$. - 3. Select r core variables. Find m-r dimensionless combinations π_1,\ldots,π_{m-r} . - 4. Pi-theorem: $\Phi(R_1,\ldots,R_m)=0 \Leftrightarrow \Psi(\pi_1,\ldots,\pi_{m-r})=0$ - 5. Specify Ψ if possible... # Summary of Dimensional Analysis ### Result: A dimensionally consistent model $\Psi(\pi_1, \dots, \pi_{m-r}) = 0$ **OBS:** Any Ψ gives a dimensionally consistent model! ## Advantages: - Easy to obtain simple models - Minimize number of variables # Summary of Dimensional Analysis #### Questions: - How to select R_i ? - Many possible π_i 's !? - Ψ is unknown!? #### Partial answers: - Choices based on: physical insight and/or simplicity - Any relevant fundamental unit must occur in at least $2 R_j$'s - $$\pi_j = \frac{R_{r+j}}{R_{\bullet}^{\bullet} \cdots R_{\bullet}^{\bullet}}$$ / well-known combinations ($Re, ...$) - Ψ ... need extra information/observations ...