Summary of Dimensional Analysis

"Physical relations are (equivalent to) relations between dimensionless combinations"

Recipe:

- Choose relevant physical quantities R₁,..., R_m.
 Conjecture there is some relation Φ(R₁,..., R_m) = 0.
- 2. Find dimension matrix A ($n \times m$) and $r = \operatorname{rank} A$.
- 3. Select r core variables. Find m-r dimensionless combinations π_1,\ldots,π_{m-r} .
- 4. Pi-theorem: $\Phi(R_1,\ldots,R_m)=0 \Leftrightarrow \Psi(\pi_1,\ldots,\pi_{m-r})=0$
- 5. Specify Ψ if possible...

Summary of Dimensional Analysis

Result:

A dimensionally consistent model $\Psi(\pi_1, \dots, \pi_{m-r}) = 0$

OBS: Any Ψ gives a dimensionally consistent model!

Advantages:

- Easy to obtain simple models
- Minimize number of variables

Summary of Dimensional Analysis

Questions:

- How to select R_i ?
- Many possible π_i 's !?
- Ψ is unknown!?

Partial answers:

- Choices based on: physical insight and/or simplicity
- Any relevant fundamental unit must occur in at least $2 R_j$'s

-
$$\pi_j = \frac{R_{r+j}}{R_{\bullet}^{\bullet} \cdots R_{\bullet}^{\bullet}}$$
 / well-known combinations ($Re, ...$)

- Ψ ... need extra information/observations ...