Scaling and non-dimensionalizing

Produce dimensionless variables and equations, with variables and coefficients \lesssim 1.

Scaling a variable u^* : $u^* = Uu$

scaled variable: $u \sim 1$, [u] = 1

scaling constant: $U \sim \max |u^*|$, $[U] = [u^*]$

Scaling/nondimensionalizing an equation:

- $1. \,$ scaling all variables in the equation
- 2. dividing the resulting equation by \sim biggest coefficient.

Finding scales

Scales are combinations of the parameters of the problem

Recipe:

- 1. Introduce scaled variables into all equations and constraints (scales to be determined): $x^* = Xx$, $t^* = Tt$, $\frac{dx^*}{dt^*} = \frac{X}{T}\frac{dx}{dt}$...
- 2. Scaling assumption: Scales variables and derivatives ~ 1 : $t, x(t), x'(t), \dots \sim 1$.
- 3. Determine scales X, T, \ldots by either of:
 - a) determining directly max $|t^*|$, max $|x^*|$, ...
 - b) balance 2 dominating/biggest terms in equation
 - c) solve a reduced problem to find estimates

Remarks on scaling

When 2 dominating terms balances:

- \Rightarrow their coefficients are equal and \sim biggest in equation.
- \Rightarrow dividing scaled equation by this coefficient: All variables and coefficients become
 - dimensionless,
 - \lesssim 1, and

 $\ \ 2 \ \ \text{coefficients}=1.$

Different situations \Rightarrow different scales:

 $\max |x^*|$, $\max |t^*|$, $\max |u^*|$, etc., and hence the dominating terms in the equation depend on the situation.

Remarks on scaling

Typical time scale for $u^*(t^*)$:

$$r = rac{\max |u^*|}{\max \left| rac{du^*}{dt^*} \right|}$$

Advantages of scaling:

- minimize the number of parameters/coefficients,
- normalize all variables and coefficients,
- reduce round-off errors in numerical calculations,
- makes small terms visible

 \Rightarrow easy to do approximations/perturbation.

ERJ (NTNU)