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This note gives a short introduction to solution of �rst order partial di¤erential equations
(PDEs) that occur in connection with models based on conservation principles. It aims
at students with only calculus background.

1 What Does the Title Mean?

The title contains several words which may be unknown:

� First Order = only �rst order derivatives occur in the equation

� Quasi-linear = the equation is linear in the �rst order derivatives

� Partial = there is more than one independent variable

2 Equations and Solutions

The theory below is illustrated for one variable z dependent on two independent variables
x and y. Equations with more independent variables are solved in a similar way.

PDEs are divided into several classes, and for an equation to belong to the class in the
title, it is necessary that it can be put into what we call the normal form. This means
that the equation can be written

P (x; y; z)
@z

@x
+Q (x; y; z)

@z

@y
�R (x; y; z) = 0: (1)

Here P , Q and R are functions only of x, y, and z, and do not contain any derivatives.
Note that @z=@x and @z=@y only occur in the �rst power, but there is no such limitation
for z in P , Q and R. The reason for the minus in front of the third term will be clear
below.

A solution of Eqn. 1 is a function,

z = f (x; y) ; (2)
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which satis�es the equation:

P (x; y; f (x; y))
@f (x; y)

@x
+Q (x; y; f (x; y))

@f (x; y)

@y
�R (x; y; f (x; y)) = 0: (3)

If we consider a regular coordinate system, (x; y; z) 2 R3, the function z = f (x; y) will
de�ne a surface in R3. Typically, �nding a solution to Eqn. 1 means to �nd a function
f (x; y) ful�lling some addition conditions, e.g. having given values on some curve in
the xy-plane. It will soon become clear that solving a PDE is radically di¤erent from
solving ordinary di¤. equations, although ordinary equations sometimes come up during
the solution process.

From Calculus we probably remember that the vector

n =

�
@f (x; y)

@x
;
@f (x; y)

@y
;�1

�
(4)

is a normal vector (perpendicular) to the surface z = f (x; y) in the point (x; y; z) (Try
to derive this yourself if you do not know it).

A vector �eld V (x; y; z) in R3 is de�ned in terms of three functions making up the
three components of the vector, say

V (x; y; z) = [P (x; y; z) ; Q (x; y; z) ; R (x; y; z)] : (5)

A vector �eld de�nes a set of stream lines in space. Curves in space may be parametrized
by a variable s and written as

r (s) = [x (s) ; y (s) ; z (s)] ; s 2 R: (6)

The stream lines for the vector �eld V satisfy the following system of di¤erential equa-
tions

dr

ds
= V (x; y; z) ; (7)

or, written out,

dx

ds
= P (x; y; z) ;

dy

ds
= Q (x; y; z) ; (8)

dz

ds
= R (x; y; z) :

In general, one can set r (s0) = r0 = [x0; y0; z0] and solve the system 8 in order to �nd
the stream line through r0. In the PDE literature, you often �nd Eqn. 8 written as

dx

P
=
dy

Q
=
dz

R
: (9)

This means exactly the same and is nothing but a short way of writing Eqn. 8.

We now make an interesting observation:
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Figure 1: The characteristics through � de�ne a solution to the Cauchy problem.

� The normal vector to a solution of Eqn. 1 is perpendicular to the stream lines of
the vector �eld V, de�ned as in Eqn. 5 with P , Q, and R from Eqn. 1.

This is quite obvious since

V � n = [P;Q;R] �
�
@f

@x
;
@f

@y
;�1

�
= P

@f

@x
+Q

@f

@y
�R = 0! (10)

In the PDE theory, the stream lines are called characteristic curves, or simply charac-
teristics.

It is the important observation above that now makes it possible for us to solve the
so-called Cauchy problem:

Given a curve � in space. Find a function z = f (x; y) that satis�es Eqn. 1 and is such
that the curve � is contained in the surface de�ned by the solution.

The Cauchy problem is the common name for such problems, resembling what we would
call an initial value problem for ordinary di¤. equations.

If we think in practical terms, is actually not so di¢ cult to imagine how this could be
carried out: For all points on �, we �nd the characteristic curves through the points.
When we then move along �, the characteristics slice out a surface in space. By the
way the surface is made, the normal vectors to the surface must be orthogonal to the
characteristics. In other words, we have actually got the situation in Eqn. 10, and have
found a solution to 1, as illustrated in Fig. 1.

When P , Q , and R are nice and reasonable functions, the solution of Eqn. 8 will be
unique. This means that only one characteristic curve can pass through each point in
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space, or that two di¤erent characteristic curves in space can never collide. However,
this does not prevent a solution, as the one on Fig. 1, from �folding over�, meaning
that one has two di¤erent z-values for each point (x; y). We shall see later that this
complicates matters for real world problems where z has a physical meaning.

There are also two special situations where the characteristic method needs to be mod-
i�ed. The �rst is when � itself (or parts of it) is a characteristic curve. Where this is
the case, a unique solution to the equation can not be obtained. The second possibility
is when there exists functions f (x; y) so that

P (x; y; f (x; y)) = 0;

Q (x; y; f (x; y)) = 0; (11)

R (x; y; f (x; y)) = 0:

Such functions are called singular solutions, since they obviously satisfy Eqn. 1.

Even if this way of solving the equations may seem simple, it is quite implicit and not
always so easy to carry out. Finally, even if both � and the characteristics are known, it
may be di¢ cult or even impossible to write the solution in the explicit form z = f (x; y).

3 An Example

The following example is taken from Volume III of the classic calculus textbook �Lærebok
i matematisk analyse�by R. Tambs Lyche, §282 (used at NTH for generations).

We are expected to �nd the solution of the equation

x
@z

@x
+ y

@z

@y
� 1 = 0 (12)

passing through the space curve

r (t) = �i+ 2tj+ t2k; t 2 R (13)

(i, j, and k are unit vectors along the respective axes).

The �rst step will be to determine the characteristics, that is, to solve

dx

ds
= P (x; y; z) = x;

dy

ds
= Q (x; y; z) = y; (14)

dz

ds
= R (x; y; z) = 1:

It is not di¢ cult to solve these equations since they do not interfere with each other:

x (s) = C1e
s;

y (s) = C2e
s; (15)

z (s) = s+ C3:
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It remains to �nd expressions for the special characteristics that pass through the space
curve, and thus eliminate the free constants C1, C2 and C3 in Eqn. 15. There are several
ways to proceed, and the following is somewhat simpler than the method used in the
reference. Let us (without loss of generality) assume that the characteristics cross the
curve for s = 0. We then obtain

x (0) = C1 = �1;
y (0) = C2 = 2t;

z (0) = C3 = t
2:

The solution is thus the surface de�ned in parametric form as

x = C1e
s = �es;

y = C2e
s = 2tes; (16)

z = s+ C3 = s+ t
2;

for the pair of parameters (s; t) 2 R2.
In this special case it is actually also possible to eliminate s and t, and write z as a
function of x and y. From the two �rst equations in Eqn. 16 we see that

s = ln (�x) ; (17)

t = � y

2x
: (18)

If this is inserted into the third equation we obtain

z = ln (�x) +
� y
2x

�2
: (19)

4 Recipe

1. Be sure that the PDE is written in the form

P (x; y; z)
@z

@x
+Q (x; y; z)

@z

@y
�R (x; y; z) = 0; (20)

with no derivatives in P , Q, and R. Do not forget the minus sign in front of R!

2. Determine the �-curve and put it in the parametric form

r (s) = [x (s) ; y (s) ; z (s)] ; s 2 R:

Often, it is possible to use x or y as the parameter, say, x = x, y = g (x), z = f (x).
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3. Form the ODE system for the characteristic curves,

dx

ds
= P (x; y; z) ;

dy

ds
= Q (x; y; z) ; (21)

dz

ds
= R (x; y; z) ;

and solve it by some standard method (In real life, this may have to be carried out
numerically).

4. Determine the collection of characteristics passing through � by imposing appro-
priate initial conditions on the solution found in the previous point. Make sure
this de�nes a surface, which, as in the example, may sometimes be reduced to
z = f (x; y).

GOOD LUCK!
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