Equilibrium points

1. Equilibrium point:

A constant solution u_e of the problem (e.g. ODEs or PDEs)

2. **Stable** equilibrium point u_e :

All solutions u(t) starting near u_e , remain near u_e for all $t \ge 0$:

 $\forall \varepsilon > 0 \ \exists \delta > 0 \quad \text{s.t.} \quad |u(0) - u_e| \le \delta \Rightarrow |u(t) - u_e| < \varepsilon \quad \forall t > 0$

- 3. Linear stability analysis for u_e
 - **(**) set solution $u = u_e + \tilde{u}$, $|\tilde{u}| \ll 1$ small perturbation
 - **2** insert into equation, drop small(=non-linear) terms \rightarrow linear equation(s) for \tilde{u} (= linearized equation(s))
 - Check if all solutions of linearized equation(s) starting near 0 (= all small perturbations) remain near.

 \longrightarrow If yes (no): indicate that u_e is stable (unstable).

4. Over time all physical systems tend to be at their stable equilibrium solutions! (... always small disturbances ...)

Full discussion in Chapter 6 in Logan: Applied Mathematics (compendium)

Background:

Lack of food \rightarrow amoeba produce attractant and aggregate.

Question:

Can onset of aggregation be caused by simple, uninteligent mechanism?

Model near onset of aggregation:

Physical quantities:

a(x, t), c(x, t) = amoeba, attractant densities; parameters

Conservation + attraction + diffusion + production:

(1)
$$a_t = \frac{\partial}{\partial x} \Big(ka_x - lac_x \Big), \quad c_t = Dc_{xx} + q_1a - q_2c.$$

(Details in lectures and in compendium)

Equilibrium points of (1):

```
= constant solutions of (1)
```

 \Rightarrow all constants (a_0, c_0) satisfying $q_1a_0 = q_2c_0$.

Linear stability analysis:

Linearize equation around (a_0, c_0) :

 $a = a_0 + \tilde{a}$, $c = c_0 + \tilde{c}$; \tilde{a}, \tilde{c} small; drop small(nonlin) terms

(2) $\tilde{a}_t = k \tilde{a}_{xx} - l a_0 \tilde{c}_{xx}, \qquad \tilde{c}_t = D \tilde{c}_{xx} + q_1 \tilde{a} - q_2 \tilde{c}.$

Stability: (a_0, c_0) is stable / unstable by linear stability analysis if \tilde{a}, \tilde{c} always remain small / do not remain small in all cases.

Particular solutions/Fourier modes of (2): (\approx heat equations)

(3) $\tilde{a} = C_1 e^{\alpha t} \cos(\beta x)$ and $\tilde{c} = C_2 e^{\alpha t} \cos(\beta x)$ solve (2) iff (4) $\underbrace{\begin{pmatrix} \alpha + k\beta^2 & la_0\beta^2 \\ -q_1 & \alpha + D\beta^2 + q_2 \end{pmatrix}}_{B} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Analysis of (4):

Non-zero solutions $\vec{C} = (C_1, C_2)$ iff det B = 0det $B = 0 \iff \alpha^2 + b\alpha + c = 0$ for (5) $b = k\beta^2 + D\beta^2 + q_2$ and $c = kq_2\beta^2 + kD\beta^4 - q_1la_0\beta^2$. Solve for α :

$$\begin{aligned} \alpha_{\pm} &= \frac{1}{2} (-b \pm \sqrt{b^2 - 4c}). \\ b^2 - 4c &= \cdots \ge 0 \quad \Rightarrow \quad \alpha_{\pm} \in \mathbb{R}, \quad (\alpha_{-} \le \alpha_{+}). \end{aligned}$$

Conclusions for (4):

(i) For very $\beta \in \mathbb{R}$, there are real α_{\pm} and solutions $\vec{\mathcal{C}}_{\alpha_{\pm},\beta} \neq 0$ of (4).

(ii) For any s > 0, $s\vec{C}_{\alpha_{\pm},\beta}$ also solves (4).

(iii) Hence for every β and $\varepsilon > 0$,

there is a solution \vec{C}_{β} of (4) with $\alpha = \alpha_+$ and $|\vec{C}_{\beta}| < \varepsilon$

Special solutions/Fourier modes (3): (a) $(\tilde{a}, \tilde{c}) := \vec{C}_{\alpha_{\pm},\beta} e^{\alpha_{\pm}t} \cos \beta t$ bounded $\Leftrightarrow \alpha_{+} \leq 0 \quad \Leftrightarrow \quad c \geq 0$ (b) If c < 0, then $(\tilde{a}_{1}, \tilde{c}_{1}) := \vec{C}_{\beta} e^{\alpha_{+}t} \cos \beta t$ unbounded, and $|\tilde{a}_{1}(0, x)|^{2} + |\tilde{c}_{1}(x, 0)|^{2} = |\vec{C}_{\beta}|^{2} < \varepsilon^{2}.$

(Linearized) stability of (a_0, c_0) :

Stable when $c \ge 0$ (all Fourier modes stable)

Unstable when c < 0 (\tilde{a}_1, \tilde{c}_1 starts near, but blows up)

In terms of the parameters of the problem:

 $c \geq 0 \qquad \Leftrightarrow \qquad k(Deta^2+q_2) \geq q_1 la_0, \hspace{0.3cm} ext{see} \hspace{0.1cm} ext{(5)}$

Hence:

 $\begin{array}{ll} \text{stable} & \text{if} \quad kq_2 \geq q_1 la_0 \quad (\Rightarrow \quad c \geq 0 \text{ for all } \beta) \\ \\ \text{unstable} & \text{if} \quad kq_2 < q_1 la_0 \quad (\Rightarrow \quad c < 0 \text{ for } \beta^2 \text{ small enough}) \end{array}$

Aggregation of Amoeba – Conclusion

Parameters:

- k diffusivity of amoeba a, q_2 break down rate of c,
- q_1 production rate of c, la_0 attraction rate due to c.

Physical interpretation:

Enough food: $kq_2 \ge q_1 la_0$

 \Rightarrow (All) equilibrium point(s) (a_0, c_0) stable

- \Rightarrow solutions tend over time to constant / uniform consentration.
- Lack of food: $kq_2 < q_1 la_0$
 - \Rightarrow (All) equilibrium point(s) (a_0, c_0) unstable.
 - \Rightarrow solutions move away from constant / uniform consentration.

This is the onset of aggregation/lumping!