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Exercise classes

Current favorite (at time of preparing the slides):
I Wednesday 12–13 or 13–14.

Try to move the exercises to one of these times (if available room can
be found).

Try to find a time slot for my office hours that particularly suits those
that cannot attend the exercise class.

Please fill out the doodle poll today.
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Dimensional analysis

Physical relations can be rewritten as relations between
dimensionless combinations.
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Dimensional analysis

Physical relations can be rewritten as relations between
dimensionless combinations.

Identify relevant physical quantities R1,. . . ,Rm.

Construct the dimension matrix A ∈ Rn×m and its rank r .

Select r core variables and find m − r dimensionless combinations
Π1,. . . ,Πm−r .

Deduce (Π-theorem) relation of the form

Ψ(Π1, . . . ,Πm−r ) = 0.

Find Ψ if possible. . .
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Dimensional analysis

Physical relations can be rewritten as relations between
dimensionless combinations.

Swinging pendulum — relevant quantities:

Frequency ω, dimension [ω] = 1/s.

Length L, dimension [L] = m.

Mass m, dimension [m] = kg .

Gravitational acceleration g , dimension [g ] = m/s2.

Initial angle ϑ0, dimension [ϑ0] = 1 (dimensionless!).
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Dimensional analysis

Physical relations can be rewritten as relations between
dimensionless combinations.

Swinging pendulum — dimension matrix:

ω L m g ϑ0

kg 0 0 1 0 0
m 0 1 0 1 0
s -1 0 0 -2 0
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Dimensional analysis

Physical relations can be rewritten as relations between
dimensionless combinations.

Swinging pendulum — dimension matrix:

ω L m g ϑ0

kg 0 0 1 0 0
m 0 1 0 1 0
s -1 0 0 -2 0

Can choose core variables L, m, g , and obtain

Π1 =
ω

L?m?g?

!
=

ω L1/2

g1/2
,

Π2 =
ϑ0

L?m?g?

!
= ϑ0.
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Dimensional analysis

Physical relations can be rewritten as relations between
dimensionless combinations.

Swinging pendulum — defining relation:

Ψ(Π1,Π2) = Ψ
(
ω

√
L

g
, ϑ0

)
= 0.

Argumentation shows that mass m of the pendulum is irrelevant.

Physical argumentation: frequency depends uniquely on L, g , ϑ0.
Deduce therefore relation

ω =

√
g

L
Ψ̃(ϑ0).
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Dimensional analysis — model modifications

What happens if we add friction to the model?

Cannot talk about frequency, as the motion won’t be periodic. But
still could say: ω . . . inverse of time to the first local maximum.

Friction is complicated — simplest model: friction force depends
linearly on the velocity.

Obtain friction force of the form

Ff = kv

with:
I v . . . velocity of the (weight of the) pendulum.
I k . . . friction constant depending e.g. on medium, shape of the

pendulum, . . .

Dimensions:

[k] =
[F ]

[v ]
=

kg m

s2
· s
m

=
kg

s
.
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Dimensional analysis — model modifications II

Obtain new (enlarged) dimension matrix:

ω L m g ϑ0 k

kg 0 0 1 0 0 1
m 0 1 0 1 0 0
s -1 0 0 -2 0 -1

and dimensionless variables

Π1 = ω

√
L

g
, Π2 = ϑ0, Π3 =

k

m

√
L

g
.

Obtain the relation:

ω =

√
g

L
Ψ
(
ϑ0,

k

m

√
L

g

)
.
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