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Glaciers

Engabreen, Meløy kommune, Nordland.

Photo: Hallgeir Elvehøy, July 2015.
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More glaciers

White Glacier, Nunavut, Canada.

Photo: Jürg Alean, July 2008.
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Model equation

Can model the height h of a glacier by the equation

∂

∂t
h + λ

d

dx
hm+2 = q.
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Basic modelling

Goal:

Formulate equations that describe the dynamics that are going on in
the interior of a glacier.

Main tools:

Conservation laws for mass and momentum.
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Mathematical set-up

α . . . slope of the
valley.

h . . . height of
the glacier.

w = (u, v)
. . . velocity of the
glacier.

(x , z)
. . . coordinates
along/above the
valley.

z

x−g~e3

h(x , t)

w

α
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Conservation laws — mass

Mass is only removed on the surface z = h(x , t) of the glacier.

The ice is essentially incompressible.

Can assume a constant density ρ of the glacial ice.

For each moving control volume R = R(t) completely contained in the
interior of the glacier we obtain

d

dt

∫
R(t)

ρ dx dz = 0

or in Eulerian, differential form

∇ ·w = ∂xu + ∂zv = 0.

(How is this equation obtained?)
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Conservation laws — momentum

In Lagrangian form, we have the conservation of momentum (in a moving
control volume R(t))

d

dt

∫
R(t)

ρ∇w =

∫
R(t)

f +

∫
∂R(t)

T · n

with

f . . . body forces (gravity).

T . . . stress, composed of pressure and viscous stresses, that is,

T = −p Id +τ with τ =

(
τx
τz

)
=

(
τxx τxz
τzx τzz

)
.

We will ignore the term on the left hand side in the following.

(Why can we do that?)
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Conservation laws — resulting equations

Decomposing the pressure as

p = ρg cosα(h − z) + p̃

and inserting expressions for the force, we arrive at the equations (in
Eulerian form)

∇ ·w = 0,

∇ · τx + ρg sinα− ρg cosα∂xh − ∂x p̃ = 0,

∇ · τz − ∂z p̃ = 0.

We still need a formulation for the (viscous) stress τ .
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Stress tensor — Glen’s law

A common assumption in ice-sheet modelling is Glen’s law

eij = µθm−1τij , i , j ∈ {x , z},

where

eij =
1

2
(∂iwj + ∂jwi )

and

θ2 =
1

2

∑
i ,j

τ2
ij .

Here µ is a (usually temperature dependent) constant and m ≈ 3 some
parameter.
Note that this implies that

τxz = τzx and τxx = −τzz .

(Why?)
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Full set of PDEs

Collecting everything, we obtain the system of PDEs

∂xu + ∂zv = 0,

∂xτxx + ∂zτxz + ρg sinα− ρg cosα∂xh − ∂x p̃ = 0,

∂xτxz − ∂zτzz − ∂z p̃ = 0,

∂xu − µθm−1τxx = 0,

1

2
(∂zu + ∂xv)− µθm−1τxz = 0,

θ2 − τ2
xx − τ2

xz = 0,

for the functions u, v , p̃, τxx , τxz , θ in the interior of the glacier.
Note: We have a free boundary problem on the region

Ω(t) =
{

(x , z) : 0 < z < h(x , t)
}
.
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Mass conservation on the surface

Assume that ice is deposited/melts on the surface of the glacier at a rate
q(x , t). Conservation of matter then yields

d

dt

∫ b

a
h(x , t) dx + J(b, t)− J(a, t) =

∫ b

a
q(x , t),

where

J(x , t) =

∫ h(x ,t)

0
u(x , z , t) dz

is the volume flux at x and t.

(Why?)

This can be used to derive a PDE that couples the height h of the glacier
with the velocity u and the accumulation rate q.

(How?)
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Approximation

Goal:

Simplify the equations in the specific situation of a glacier model.

Try to get rid of the free boundary problem.

Main tools:

Dimensional analysis and rescaling.

Asymptotic expansions.
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Scaling

Typical situation in glaciers:

Length L is much larger than (maximal) height H.

E.g.: the tongue of Engabreen has a length of more than 1km, but a
typical height of ∼50m.

We can rescale the variables as

x∗ = Lx , z∗ = Hz , h∗ = Hh,

and then try to make use of the small parameter

ε =
H

L
.

Scales for time, velocities, stresses, and pressure need to be based on
balancing terms in the PDEs.
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Asymptotic expansion

Rescale the equations according to the scales chosen previously, and
ignore all but the lowest order terms.

We should obtain in particular the equations

∂zτxz = const and ∂zu = const |τxz |m−1τxz .

At the surface of the glacier, the shear stress τxz is equal to zero.

If the glacier is frozen to its rock bed, then the velocity u at its
bottom is equal to zero.

This allows an explicit calculation of u (and v) only depending on h.

(Details?)
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Resulting equation

With the asymptotic expansion chosen above, we arrive at the hyperbolic
equation

∂th + λ
d

dx
hm+2 = q.

Possible modifications:

A non-uniform valley floor can be easily built into the equations.
(How?)

If the slope α of the valley is small as well, we have another small
parameter in the set of equations. For the particular case α ∼ ε, a
relatively simple modification of the same approach is possible,
resulting in a non-linear, degenerate parabolic equation.
(How?)
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Numerical simulations

Goal:

Use the model derived previously in order to simulate the dynamics of
glaciers.

Main tools:

Numerical methods for ODEs and PDEs.
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Steady states

If the accumulation rate is (approximately) constant in time, it is possible
that the glacier eventually reaches a steady state, where its flow perfectly
balances the accumulation of ice at its top and the melting at its toe.

Questions:

How many (if any) steady states are there? Can we compute them
explicitly?

Is it possible to say something about the stability of steady states?

Will a glacier eventually reach its steady state?
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Dynamics within a glacier

Even if a glacier appears stationary and its shape does not change over
time, it is in permanent movement. Objects on the surface get covered in
ice and will be slowly transported through the glacier, until they appear
again, much further downstream, on its surface.

Questions:

Compute (numerically) the trajectories of objects through a glacier.

How long does it take until an object that is will appear again?
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Dynamics of a glacier

Questions:

Implement a numerical method for the solution of the (hyperbolic or
degenerate parabolic) equation describing the movement of a glacier.

Simulate with your method different scenarios like the formation of a
glacier or changing climate conditions.
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