Scaling (and non-dimensionalisation)

Markus Grasmair

Department of Mathematics, Norwegian University of Science and Technology, Trondheim, Norway

> Trondheim, August 31, 2018

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Scaling

Goal: reformulate relations in such a way that all relevant quantities are of size $\lesssim 1.$

- Unscaled variable u^* .
- Write

$$u^* = Uu$$

with:

- u ... scaled variable,
- U ... characteristic scale (size) of u^* .
- Good choice of scale is such that $u \sim 1$ within the region of interest.

Advantages:

- Reduce the number of parameters/coefficients.
- Normalise all variables (stabilise numerics).
- Identify small (and very small) terms.

Finding scales

Typical scaling for a time dependent function $u^*(t^*)$:

• Scale u^* to values $\lesssim 1$:

$$u^* = uU$$
 with $U \sim \max_{t^*} |u^*(t^*)|$.

• Scale time t^* such that velocities (derivatives) are $\lesssim 1$:

$$t^* = tT$$
 with $T \sim rac{\max_{t^*} |u^*(t^*)|}{\max_{t^*} |rac{du^*}{dt^*}(t^*)|}.$

- Maxima are taken over the region of interest.
- Different situations lead to different scalings.