Stability of ODEs

Markus Grasmair

Department of Mathematics, Norwegian University of Science and Technology, Trondheim, Norway

> Trondheim, September 26, 2018

▲ 同 ▶ → 三 ▶

Equilibria

We consider a system of explicit, first order, autonomous ODEs

$$\dot{y} = F(y)$$
 with $F \colon \mathbb{R}^n \to \mathbb{R}^n$. (1)

• An equilibrium point $y_e \in \mathbb{R}^n$ of (1) is a solution of the equation

$$F(y)=0.$$

• In other words, y_e is an equilibrium point, if

$$y(t) = y_e$$

is a solution of (1).

Stability of equilibria

- An equilibrium point y_e is stable if for every neighbourhood U of y_e there exists a neighbourhood V of y_e such that all solutions of (1) starting in V remain in U for all time.
- An equilibrium point y_e is asymptotically stable, if it is stable and there exists a neighbourhood U of y_e such that all solutions of (1) starting in U converge to y_e .
- An equilibrium point y_e is unstable, if it is not stable. That is: There exists a neighbourhood U of y_e such that for all neighbourhoods V of y_e there exists a solution of (1) starting in V and eventually leaving U.

- 3

(日) (周) (三) (三)

Stability of linear systems

Consider specifically a linear system

$$\dot{y} = Ay$$
 with $A \in \mathbb{R}^{n \times n}$ invertible. (2)

- The only equilibrium point of (2) is the point $y_e = 0 \in \mathbb{R}^n$.
- The point 0 is asymptotically stable if and only if

$$\operatorname{Re} \lambda_i < 0$$
 for every eigenvalue λ_i of A .

• The point 0 is unstable, if there exists an eigenvalue λ_i of A such that

 $\operatorname{Re}\lambda_i > 0.$

• If the matrix A has n different eigenvalues and

$$\operatorname{\mathsf{Re}}\lambda_i\leq 0$$

for every eigenvalue λ_i of A, then 0 is stable.

Linearisation

Consider again a non-linear system

$$\dot{y} = F(y) \tag{3}$$

and an equilibrium point y_e of (3).

• The linearisation of (3) is the linear ODE

$$\dot{\tilde{y}} = DF(y_e)\tilde{y},$$
 (4)

where $DF \in \mathbb{R}^{n \times n}$ denotes the Jacobian of F.

• "Close to y_e , solutions of (3) look like functions of the form $y_e + \tilde{y}$, where \tilde{y} solves (4)."¹

¹... provided that all eigenvalues of $DF(y_e)$ have a non-zero real part (Hartman–Grobmann theorem).

Markus Grasmair (NTNU)

Stability of ODEs

Stability of non-linear systems

Assume that y_e is an equilibrium point of (3) and denote by λ_i the eigenvalues of $DF(y_e)$.

- If $\operatorname{Re} \lambda_i < 0$ for all *i*, then y_e is asymptotically stable.
- If $\operatorname{Re} \lambda_i > 0$ for any *i*, then y_e is unstable.

Note: No information about stability in case $\text{Re }\lambda_i \leq 0$ for all *i* if we do not have a strict inequality.

In particular case of a single ODE

$$\dot{y} = f(y)$$
 with $f : \mathbb{R} \to \mathbb{R}$,

- y_e is asymptotically stable if $f_y(y_e) < 0$.
- y_e is unstable if $f_y(y_e) > 0$.