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Mathematical Modelling

. . . can be roughly described as the art of

translating practical problems from applied areas into mathematical
formulations, and

using these formulations together with theoretical and numerical
methods in order to get further insight into the problem and answer
concrete practical questions.

Typical procedure:

1 Identification of the problem and the relevant quantities.

2 Formulation of the relation between these quantities.

3 Simplification and model reduction.

4 Theoretical analysis and/or numerical approximation.

5 Comparison of the results with real data.

6 Revision and refinement of the model.
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Basic laws of physics

Newton’s laws of motion:
I Change of momentum = sum of all forces.
I Momentum = mass × velocity.

Laws of electrodynamics.

Laws of thermodynamics.

Experimentally derived approximate relations.

...
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Population dynamics

Modelling of changes in populations/sub-populations (diseases,. . . ).

Logistic equation (maximal carrying capacity K ):

Ṗ = α(1− P/K )P.

Predator–prey systems:

Ṗ = αP − βPQ,
Q̇ = γPQ − δQ.

. . . additional terms depending on interactions between different
populations and environmental effects.
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Chemical reactions

Processes of the form

S1 + S2 + . . .+ Sn
α


β

P1 + P2 + . . .+ Pm.

For substances with low concentration in a well mixed solution,
effective reaction rate are proportional to the product of
concentrations of the input.

Reaction rates may be (often are) temperature dependent.
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Conservation laws

Describe large scale behaviour in time and space of a large number of
particles/independent actors.

Quantities of interests can be well described on a large scale by their
densities.

In any given region, the change of the quantities of interest can only
be due to:

I . . . production within that region,
I . . . flux through the boundary of that region.

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 7 / 33



Integral and differential forms

Total change + flux = production.

ϕ . . . density of interest.

j . . . flux density.

Q production rate.

Integral form:

d

dt

∫
R
ϕ dV +

∫
∂R

j · n dσ = Q(R).

Assume production rate of the form Q(R) =
∫
R q.

Apply divergence theorem to the boundary integral.

Obtain
∂ϕ

∂t
+∇ · j = q.
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Eulerian and Lagrangian forms

Euler formulation:

Fix a control volume and formulate the conservation law within this
region.

Lagrange formulation:

Select a collection of particles and follow these particles as they move;
formulate the conservation law for the moving particles.

Switch between formulations: Reynold’s transport theorem:

d

dt

∫
R(t)

ϕ dV =

∫
R(t)

∂

∂t
ϕ dV +

∫
∂R(t)

ϕ v · n dσ

with v . . . velocity of particles.
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Conservation of mass

Change of mass + flux through boundary = production.

ρ . . . density.

ρv . . . flux density.

Integral form:

d

dt

∫
R
ρ dV +

∫
∂R
ρv · n dσ =

∫
R
q.

Differential form:
∂ρ

∂t
+∇ · (ρv) = q.

Incompressible materials, ρ = const:

ρ (∇ · v) = q.
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Conservation of momentum

Lagrangian formulation:

d

dt

∫
R(t)

ρv dV = F (R(t), t).

F . . . total force acting on region R(t).

Eulerian formulation:

d

dt

∫
R
ρv dV +

∫
∂R

(ρv)(v · n) dσ = F (R, t).
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Stresses

Total forces can be decomposed as

F (R) = FB(R) + FS(R) =

∫
R
fB dV +

∫
∂R

T · n dσ.

fB . . . body forces (gravity, electro-magnetic forces, fictitious
forces,. . . ).

T . . . stress tensor.

In fluid dynamics typically: T = −p Id +TV with pressure p and
viscous stresses TV .

Differential formulation:

d

dt
(ρvi ) +∇ ·

(
(ρvi )v

)
= fB +∇ · ti .
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Dimensional consistency

We always deal with physical quantities consisting of values and units.

All relations have to hold independent of the choice of units.

Buckingham’s Π-theorem:

Every relation between physical quantities is equivalent to a relation
between dimensionless quantities.

Can always reduce the number of relevant parameters.

Choice of dimensionless parameters is not unique; some choices are
“better” than others.
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Scaling

Given a set of relations between physical quantities, find a reasonable
choice of units/scales:

I Obtain dimensionless relations.
I Reduce the number of parameters.
I Scales should be chosen in such a way that the interesting quantities

are well scaled.

Scaling usually based on balancing considerations.

Time is often scaled such that maximal velocities are of order one.

Scaling is specific to the physical situation; the same equations can
entail completely different scalings.

Sometimes, different scalings are necessary to describe a single
phenomenon.

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 15 / 33



Outline

1 Formulation of models
Basic models
Conservation laws
Fluid dynamics and elasticity

2 Dimensional analysis and scaling

3 Asymptotic expansions
Regular perturbations
Singular perturbations

4 Theoretical analysis
Stationary states and stability
Hyperbolic PDEs

5 Outlook

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 16 / 33



Basic idea

After rescaling, we have obtained a relation

Φ(y ; ε, µ, ν, . . .) = 0

with dimensionless parameters ε, µ, ν, . . .

In the situation we are interested in, we have ε� µ ∼ ν ∼ · · · .
Approximate the relation by

Φ0(y0;µ, ν, . . .) := Φ(y0; 0, µ, ν, . . .) = 0.

Obtain approximation y0 for sufficiently small parameters ε.
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Higher order perturbations

Obtain better approximations by including higher order terms:
Try to write solution as

y = y0 + εy1 + ε2y2 + . . .

and relation as

Φ0(y0; . . .) + εΦ1(y0, y1; . . .) + ε2Φ2(y0, y1, y2; . . .) + . . . = 0.

Solve
Φ0(y0; . . .) = 0 for y0,

Φ1(y0, y1; . . .) = 0 for y1,

Φ2(y0, y1, y2; . . .) = 0 for y2,

...
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Conflicting scales

Perturbation approach cannot be used immediately if we have
different scales at different parts of the solution.

Typical situation: small parameter ε in front of highest order
derivative y (k):

I Approximation εy (k) ∼ 0 makes only sense if y (k) � 1/ε.
I Setting ε = 0 leads to overdetermined equation because of conflicting

initial or boundary conditions.

Reasonable scalings include different small parameters in different
parts of the solutions.

Obtain different approximations that have to be fitted together.
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Outer and inner solutions

Have identified a boundary (or interior) layer where the approximation
ε = 0 leads to inconsistencies.

Use regular perturbations to obtain an outer solution outside of the
boundary layer.

Rescale the equation, and use regular perturbations for the rescaled
equation to obtain an inner solution within the boundary layer.

Adjust free constants by matching the solutions in an intermediate
region.

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 20 / 33



Outline

1 Formulation of models
Basic models
Conservation laws
Fluid dynamics and elasticity

2 Dimensional analysis and scaling

3 Asymptotic expansions
Regular perturbations
Singular perturbations

4 Theoretical analysis
Stationary states and stability
Hyperbolic PDEs

5 Outlook

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 21 / 33



Stationary states

Long term behaviour of many systems is given by their
(asymptotically) stable stationary states.

For an explicit first order system of ODEs

ẏ = F (y),

the stationary states/equilibrium points are the solutions of F (y) = 0.

For a parabolic/hyperbolic PDE

∂y

∂t
= F (x , y ,∇y ,∇2y , . . .),

the stationary states are the time independent solutions y = y(x) of
F (x , y , . . .) = 0.
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Linearisation

Assume that ye is a stationary state of the system

ẏ = F (y).

The linearisation of the system around ye is the linear system

ż = JF (ye)z ,

where JF is the Jacobian of F .

For PDEs we obtain a linearisation by Taylor expansion w.r.t. δ of

∂

∂t
(ye + δz) = F (x , ye + δz ,∇ye + δ∇z , . . .)

and collecting all terms of order δ.
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Linear stability for ODEs

An equilibrium point ye is (asymptotically) stable, if all solutions of
the system that start close to ye remain bounded (converge to ye).1

For linear systems, stability is completely determined by (geometric
and algebraic) eigenvalues of the system.

Non-linear case: Denote by λi the eigenvalues of JF (ye).
I If <λi < 0 for all i , then ye is asymptotically stable.
I If <λi > 0 for any i , then ye is unstable.

1This is not a precise definition!
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Bifurcations

Consider parameter dependent system

ẏ = F (y ;µ)

with equilibrium points yµ.

Bifurcation diagram: plot of the solutions of F (y ;µ) = 0 as µ varies.

Bifurcation points: parameters/points (µ, yµ) where a change of µ
changes the character of the equilibrium points:

I Regular turning points: stable and unstable equilibrium merge and then
vanish.

I Transcritical bifurcations: stable and unstable equilibrium merge and
then change roles.

I Pitchfork bifurcations: stable (unstable) equilibrium point becomes
unstable (stable), new set of stable (unstable) equilibrium points
emerges.

I . . .
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Method of characteristics

Consider hyperbolic PDE of the form

∂h

∂t
+ a(t, x , h)

∂h

∂x
= b(t, x , h).

Equation for characteristics given by

ẋ = a(t, x , z), x(0) = x0,

ż = b(t, x , z), z(0) = h0(x0).

Solution of the equation given by

h(x(t), t) = z(t)

if possible.

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 26 / 33



Shocks
Shocks form when characteristics collide at some point (x̄ , t̄).

Basic model:

Up to the time t̄, the density ρ is continuous.

After the time t̄, the density has a discontinuity (shock) along a curve
(s(t), t) starting at (x̄ , t̄).

Immediately to the left of the shock, the density and flux density are

ρ−(t) := ρ(s(t)−, t) j−(t) := j(t, x , ρ(s(t)−, t));

immediately to the right, they are

ρ+(t) := ρ(s(t)+, t) j+(t) := j(t, x , ρ(s(t)+, t)).

The shock develops at speed

ṡ(t) =
j+(t)− j−(t)

ρ+(t)− ρ−(t)
=:

[j ](t)

[ρ](t)
.
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Rarefaction waves

Rarefaction waves are formed, when a region of the (x , t) half-plane is not
covered by characteristics.

Basic situation for equation of the form

ρt + j(ρ)x = q(ρ) :

We have a discontinuity at a point x0 in the initial data.

Characteristics starting near x0 leave in opposite directions, creating a
“dead sector” in between.

Model the solution in the dead sector as

ρ(x , t) = ϕ
(x − x0

t

)
such that the PDE holds.
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Boundary conditions

Solution of hyperbolic PDE requires:
I Initial conditions at t = 0.
I Boundary conditions.

Need to differentiate between inflow and outflow boundaries:
I At outflow boundaries, characteristics move away of the domain of the

PDE; boundary values cannot have any effect.
I At inflow boundaries, characteristics move into the domain of the PDE;

boundary values are necessary.
I Shocks at inflow boundaries are possible.

Boundary conditions often given as flux conditions.
I Fluxes have to be translated first into ordinary boundary values.
I Additional modelling assumptions can be necessary.
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Numerics of PDEs

Mathematical models tend to lead to (possibly non-linear) PDEs.

Need accurate and fast numerical solvers for PDEs.

Possible courses:

(Finite differences (TMA4212, spring).)

Finite elements (TMA4220, autumn):
I Numerical solution of PDEs on irregular domains.
I Specifically elliptic and parabolic equations.
I Most common solution methods in engineering applications.

Numerical linear algebra (TMA4205, autumn):
I Efficient numerical solution of large systems obtained from the

discretisation of PDEs.
I Numerical treatment of (large) eigenvalue problems.
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Optimal control

Given a PDE (or ODE) modelling a specific situation of interest.

Can control certain parameters of the problem (e.g. right hand side,
boundary values).

Want to reach a specific solution (as close as possible).

Possible course:

Optimisation II (TMA4183, spring):
I Existence of optimal controls.
I Analysis of optimality conditions.
I Fundamental numerical solution methods.

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 32 / 33



Modelling weeks

Organised annually by ECMI (European Consortium of Mathematics
in industry, www.ecmiindmath.org).

One week collaboration with international students on a project based
on real world problems.

Presentations of all the different projects at the end of the week.

Afterwards summary in form of a project report.

Winter modelling week in Darmstadt, Feb 24–Mar 03 2019.
I http://www.graduate-school-ce.de/ecmi2019

Regular modelling week in Grenoble, July 2019 (exact date TBA).

Markus Grasmair (NTNU) TMA4195 - Mathematical Modelling November 21, 2018 33 / 33

www.ecmiindmath.org
http://www.graduate-school-ce.de/ecmi2019

	Formulation of models
	Basic models
	Conservation laws
	Fluid dynamics and elasticity

	Dimensional analysis and scaling
	Asymptotic expansions
	Regular perturbations
	Singular perturbations

	Theoretical analysis
	Stationary states and stability
	Hyperbolic PDEs

	Outlook

