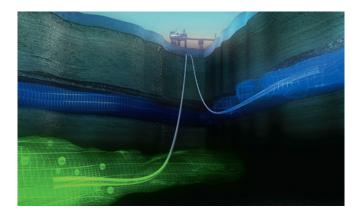
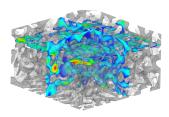
Mathematical Modeling Project fall 2019

Underground CO2 Storage



Multiphase flow in porous media

- The rock is porous
- We displace a water phase by a CO2 phase.
- Multiphase flow in porous media



$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) &= 0\\ \frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho u \otimes u) &= -\nabla p + \mu \Delta u + \frac{\mu}{3} \nabla (\nabla \cdot u) + f \end{aligned}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$$
$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho u \otimes u) = -\nabla p + \mu \Delta u + \frac{\mu}{3} \nabla (\nabla \cdot u) + f$$

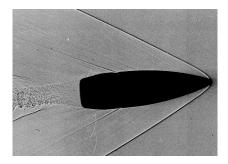
Navier-Stokes equation

$$\nabla \cdot u = 0$$
$$\mu \Delta u - \nabla p + f = 0$$

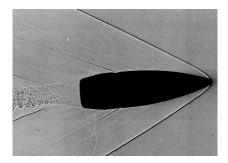
$$\nabla \cdot u = 0$$
$$\mu \Delta u - \nabla p + f = 0$$

Incompressible Stokes equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$$
$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho u \otimes u) = -\nabla p + f$$

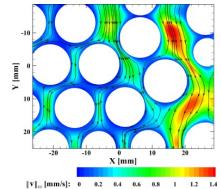


$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$$
$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho u \otimes u) = -\nabla p + f$$

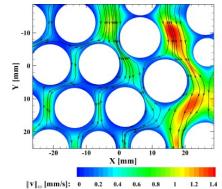


Euler equation

Strong variation of the velocity at the pore scale

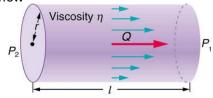


Strong variation of the velocity at the pore scale

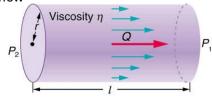


 We cannot approximate these oscillations. We use a velocity average or **Darcy velocity**.

Poisefeuille flow



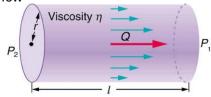
Poisefeuille flow



• We can compute the exact solution of the Stokes equation and obtain

$$\frac{Q}{\Delta P} = \frac{\pi R}{8\mu L}.$$

Poisefeuille flow



 We can compute the exact solution of the Stokes equation and obtain

$$\frac{Q}{\Delta P} = \frac{\pi R}{8\mu L}.$$

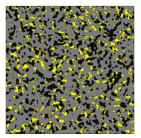
 By homogenization, we can show that there exist a permeability tensor K such that

$$u = -\frac{1}{\mu} \boldsymbol{K} \nabla p$$

for the Darcy's velocity u.

Immiscible flow

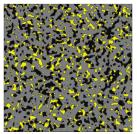
Immiscible phases



- black : solid part
- gray : wetting phase
- yellow : non-wetting phase

Immiscible flow

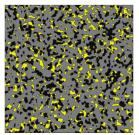
Immiscible phases



- black : solid part
- gray : wetting phase
- yellow : non-wetting phase
- Again, we cannot track all these details.

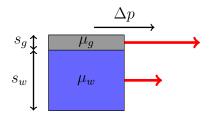
Immiscible flow

Immiscible phases



- black : solid part
- gray : wetting phase
- yellow : non-wetting phase
- Again, we cannot track all these details.
- We use upscaled variable:
 - porosity : ϕ
 - saturation : s_g and s_w , volume fraction of the pore volume occupied by the phase

The Darcy's velocity is inversely proportional to the viscosity



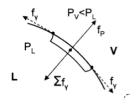
Surface tension and Young Laplace equation

Surface tension

Surface tension and Young Laplace equation

Surface tension

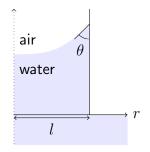
An interface can withstand a pressure



Young-Laplace equation

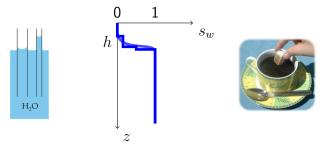
$$\Delta p = \gamma (\frac{1}{R_1} + \frac{1}{R_2})$$

- The shape of a meniscus is the result of force balance between
 - Gravity forces
 - Surface tension between air and water
 - Affinity between water/air and container.



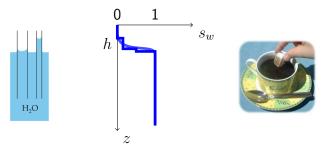
Capillary effects - homogenization

• We cannot model the details. We proceed with **homogenization**



Capillary effects - homogenization

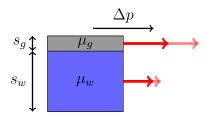
• We cannot model the details. We proceed with **homogenization**



 The upscaled effects are given by the relative permeability and the capillary pressure function.

relative permeability

• The relative permeability accounts for the difficulty of a phase to flow when it is surrounded by another phase.



In this case, it is **relatively harder** for the gas to flow in because there is a lot of water.

Capillary pressure function

- One pressure per phase, p_g and p_w
- The capillary function is a function of saturation which relates the two pressure phases,

$$p_c(s) = p_w - p_g$$

Capillary pressure function

- One pressure per phase, p_g and p_w
- The capillary function is a function of saturation which relates the two pressure phases,

$$p_c(s) = p_w - p_g$$

- Consider p_w as reference pressure. Then, the gas pressure is

$$p_g = p_w - p_c(s).$$

• Property: p_c is monotone decreasing.

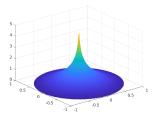
project description

Single phase flow

Governing equation

$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot \left(-\frac{\rho}{\mu} \boldsymbol{K} \nabla p \right) = 0.$$

 Q1,2: Derive the equation and compute the solution for a linear or point injection well with radially symmetric boundary conditions.



Two-phase flow

Governing equation

$$\frac{\partial \rho_{\alpha} \phi s_{\alpha}}{\partial t} + \nabla \cdot (\rho_{\alpha} \boldsymbol{u}_{\alpha}) = 0,$$
$$\boldsymbol{u}_{\alpha} = -\frac{s_{\alpha}}{\mu_{\alpha}} \boldsymbol{K} \nabla p.$$

Q3: Derive the equation

Two-phase flow

Governing equation

$$\begin{aligned} \frac{\partial \rho_{\alpha} \phi s_{\alpha}}{\partial t} + \nabla \cdot (\rho_{\alpha} \boldsymbol{u}_{\alpha}) &= 0, \\ \boldsymbol{u}_{\alpha} &= -\frac{s_{\alpha}}{\mu_{\alpha}} \boldsymbol{K} \nabla p. \end{aligned}$$

- Q3: Derive the equation
- Fractional flow formulation. In 1D and incompressible case, the equations can be written in the fractional flow formulation,

$$(\phi s)_t + (f(s)u)_x = 0.$$

Q4,5: Explain this derivation.

Hyperbolic conservation laws

- General form of an hyperbolic conservation law in 1D

$$s_t + f(s)_x = 0$$

Hyperbolic conservation laws

- General form of an hyperbolic conservation law in 1D

$$s_t + f(s)_x = 0$$

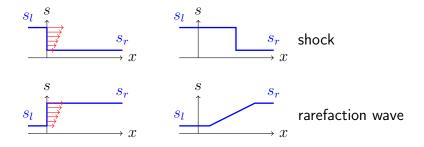
 Fundamental solutions for hyperbolic conservation laws are given by the **Riemann** problems

Hyperbolic conservation laws

- General form of an hyperbolic conservation law in 1D

$$s_t + f(s)_x = 0$$

- Fundamental solutions for hyperbolic conservation laws are given by the **Riemann** problems
- Example: Burgers' equation: $s_t + (s^2)_x = 0$,



Fractional flow formulation

Governing equation

$$(\phi s)_t + (f(s)u)_x = 0$$

Q5: Compute the Riemann solution.

Fractional flow formulation

Governing equation

$$(\phi s)_t + (f(s)u)_x = 0$$

Q5: Compute the Riemann solution.

• We add capillary pressure, $p_c(s)$.

$$(\phi s)_t + (f(s)u)_x - (g(s)s_x)_x = 0$$

Q6,7: Derive the equation. Find expressions for f and g. Solve the equation numerically.

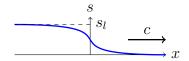
The equation

$$(\phi s)_t + (f(s)u)_x - (g(s)s_x)_x = 0$$

is no longer a hyperbolic conservation law. We do not have Riemann solution.

Q8: Investigate the existence of traveling waves,

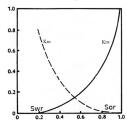
$$s(t,x) = \hat{s}(x - ct)$$



Find s_l and velocity c.

Relative permeability

Relative permeabilities are empirical data

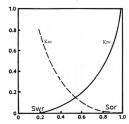


We have

$$u_{\alpha} = \frac{k_{r\alpha}(s_{\alpha})}{\mu_{\alpha}} K \nabla p$$

Relative permeability

Relative permeabilities are empirical data



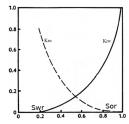
We have

$$u_{\alpha} = \frac{k_{r\alpha}(s_{\alpha})}{\mu_{\alpha}} K \nabla p$$

The formulation allows for immobile oil or water

Relative permeability

Relative permeabilities are empirical data



We have

$$u_{\alpha} = \frac{k_{r\alpha}(s_{\alpha})}{\mu_{\alpha}} K \nabla p$$

- The formulation allows for immobile oil or water
- Q9,10: What are the Riemann solutions and the traveling waves for the corresponding fractional flow formulation?

• The effects of gravity have the smallest timescale.

- The effects of gravity have the smallest timescale.
- We use hydrostatic approximation in the vertical direction

- The effects of gravity have the smallest timescale.
- We use hydrostatic approximation in the vertical direction
- Governing equations for the incompressible case become

$$p(x, y, z) = P(x, y) + \rho g z,$$

$$\nabla_{\parallel} \cdot \left(\frac{k}{\mu} \nabla_{\parallel} P\right) = 0.$$

- The effects of gravity have the smallest timescale.
- We use hydrostatic approximation in the vertical direction
- Governing equations for the incompressible case become

$$p(x, y, z) = P(x, y) + \rho g z,$$

$$\nabla_{\parallel} \cdot \left(\frac{k}{\mu} \nabla_{\parallel} P\right) = 0.$$

 This is a reduced model: The advantage is that a 3D problem becomes 2D. Easier to solve.

- The effects of gravity have the smallest timescale.
- We use hydrostatic approximation in the vertical direction
- Governing equations for the incompressible case become

$$p(x, y, z) = P(x, y) + \rho g z,$$

$$\nabla_{\parallel} \cdot \left(\frac{k}{\mu} \nabla_{\parallel} P\right) = 0.$$

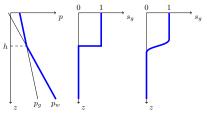
- This is a reduced model: The advantage is that a 3D problem becomes 2D. Easier to solve.
- **Q11,12**: Explain how the reduced model is obtained. Consider the compressible case.

• The phases segregate so that the gas remains at the top of the water

- The phases segregate so that the gas remains at the top of the water
- The vertical equilibrium equations (without capillary pressure) are

$$\lambda_{\alpha}(s_{\alpha})\frac{k}{\mu_{\alpha}}(\frac{\partial p}{\partial z}-\rho_{\alpha}g)=0,$$

• **Q13,14**: Compute the solution of the vertical equilibrium with and without capillary pressure



Governing equation for the reduced problem:

$$egin{aligned} &rac{\partial \phi S_lpha}{\partial t} +
abla_{\parallel} \cdot oldsymbol{u}_lpha &= 0, \ &oldsymbol{u}_lpha &= -\Lambda_lpha(S_lpha)k
abla_{\parallel} P_lpha, \ &P_c(S_g) = P_w - P_g. \end{aligned}$$

Governing equation for the reduced problem:

$$\begin{split} \frac{\partial \phi S_{\alpha}}{\partial t} + \nabla_{\parallel} \cdot \boldsymbol{u}_{\alpha} &= 0, \\ \boldsymbol{u}_{\alpha} &= -\Lambda_{\alpha}(S_{\alpha})k \nabla_{\parallel} P_{\alpha}, \\ P_{c}(S_{g}) &= P_{w} - P_{g}. \end{split}$$

• Q15: Derive this model equation

Governing equation for the reduced problem:

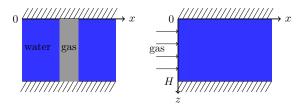
$$\begin{aligned} \frac{\partial \phi S_{\alpha}}{\partial t} + \nabla_{\parallel} \cdot \boldsymbol{u}_{\alpha} &= 0, \\ \boldsymbol{u}_{\alpha} &= -\Lambda_{\alpha}(S_{\alpha})k \nabla_{\parallel} P_{\alpha}, \\ P_{c}(S_{g}) &= P_{w} - P_{g}. \end{aligned}$$

- Q15: Derive this model equation
- Remarkably, the model equation takes the same form as the original 2D problem with relative permabilities and capillary pressure.

Fractional flow formulation

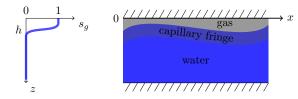
$$\frac{\partial \phi s}{\partial t} + \frac{\partial}{\partial x}(f(s)u - g(s)s_x) = 0.$$

 Q16,17: Derive fractional flow formulation. Implement numerical scheme. Solve for the following inputs

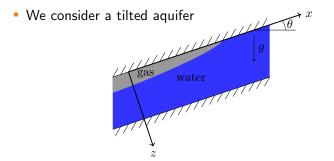


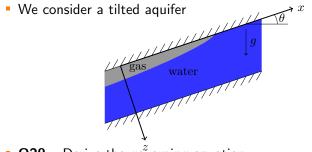
Vertical Equilibrium Approximation - Capillary fringe

- We add capillary effects and obtain a capillary fringe



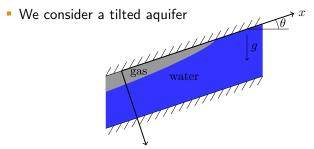
• **Q18,19**: Find a relation between S_g and h (where $p_c(s_g(h)) = 0$). Derive the reduced model.





• **Q20**: Derive the governing equation

$$\frac{\partial \phi s_{\alpha}}{\partial t} - \frac{\partial}{\partial x} (\lambda_{\alpha}(s_{\alpha})k(\frac{\partial p}{\partial x} + \rho_{\alpha}g\sin\theta)) - \frac{\partial}{\partial z} (\lambda_{\alpha}(s_{\alpha})k(\frac{\partial p}{\partial z} - \rho_{\alpha}g\sin\theta)) = 0$$

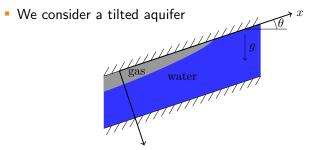


Q20: Derive the governing equation

$$\frac{\partial \phi s_{\alpha}}{\partial t} - \frac{\partial}{\partial x} (\lambda_{\alpha}(s_{\alpha})k(\frac{\partial p}{\partial x} + \rho_{\alpha}g\sin\theta)) - \frac{\partial}{\partial z} (\lambda_{\alpha}(s_{\alpha})k(\frac{\partial p}{\partial z} - \rho_{\alpha}g\sin\theta)) = 0$$

Q21: Derive the reduced model and fractional flow formulation

$$\frac{\partial \phi s}{\partial t} + \frac{\partial}{\partial x} (f(s)u + g(s)(-H\cos\theta s_x + \sin\theta)) = 0$$



• Q20: Derive the governing equation

$$\frac{\partial \phi s_{\alpha}}{\partial t} - \frac{\partial}{\partial x} (\lambda_{\alpha}(s_{\alpha})k(\frac{\partial p}{\partial x} + \rho_{\alpha}g\sin\theta)) - \frac{\partial}{\partial z} (\lambda_{\alpha}(s_{\alpha})k(\frac{\partial p}{\partial z} - \rho_{\alpha}g\sin\theta)) = 0$$

Q21: Derive the reduced model and fractional flow formulation

$$\frac{\partial \phi s}{\partial t} + \frac{\partial}{\partial x} (f(s)u + g(s)(-H\cos\theta s_x + \sin\theta)) = 0$$

• Q22: Determine the traveling waves.

- This is an exercise not an evaluation

- This is an exercise not an evaluation
- You do not have to answer to all the questions

- This is an exercise not an evaluation
- You do not have to answer to all the questions
- You can work on questions that are not in the text.

- This is an exercise not an evaluation
- You do not have to answer to all the questions
- You can work on questions that are not in the text.
- Questions!