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Multiphase flow in porous media

The rock is porous

We displace a water phase by a CO2 phase.

Multiphase flow in porous media
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Flow equation Quiz

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+ µ∆u+

µ

3
∇(∇ · u) + f

Navier-Stokes equation
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Darcy approximation

Strong variation of the velocity at the pore scale

We cannot approximate these oscillations. We use a
velocity average or Darcy velocity.
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Darcy approximation

Poisefeuille flow

We can compute the exact solution of the Stokes
equation and obtain

Q

∆P
=

πR

8µL
.

By homogenization, we can show that there exist a
permeability tensor K such that

u = − 1

µ
K∇p

for the Darcy’s velocity u.
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Immiscible flow

Immiscible phases

black : solid part

gray : wetting phase

yellow : non-wetting phase

Again, we cannot track all these details.

We use upscaled variable:

porosity : φ
saturation : sg and sw, volume fraction of the pore
volume occupied by the phase
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The effect of viscosity

The Darcy’s velocity is inversely proportional to the
viscosity

µw

µg

∆p

sw

sg
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Surface tension and Young Laplace equation

Surface tension

An interface can withstand a pressure

Young-Laplace equation

∆p = γ(
1

R1

+
1

R2

)

9



Surface tension and Young Laplace equation

Surface tension

An interface can withstand a pressure

Young-Laplace equation

∆p = γ(
1

R1

+
1

R2

)

9



Shape of a meniscus

The shape of a meniscus is the result of force balance
between

Gravity forces
Surface tension between air and water
Affinity between water/air and container.

r

water

air

l

θ
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Capillary effects - homogenization

We cannot model the details. We proceed with
homogenization

z

h

0 1
sw

The upscaled effects are given by the relative
permeability and the capillary pressure function.

11



Capillary effects - homogenization

We cannot model the details. We proceed with
homogenization

z

h

0 1
sw

The upscaled effects are given by the relative
permeability and the capillary pressure function.

11



relative permeability

The relative permeability accounts for the difficulty of a
phase to flow when it is surrounded by another phase.

µw

µg

∆p

sw

sg

In this case, it is relatively harder for the gas to flow in
because there is a lot of water.
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Capillary pressure function

One pressure per phase, pg and pw

The capillary function is a function of saturation which
relates the two pressure phases,

pc(s) = pw − pg

Consider pw as reference pressure. Then, the gas pressure
is

pg = pw − pc(s).

Property: pc is monotone decreasing.
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Single phase flow

Governing equation

∂ρφ

∂t
+∇ · (−ρ

µ
K∇p) = 0.

Q1,2: Derive the equation and compute the solution for
a linear or point injection well with radially symmetric
boundary conditions.
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Two-phase flow

Governing equation

∂ραφsα
∂t

+∇ · (ραuα) = 0,

uα = − sα
µα

K∇p.

Q3: Derive the equation

Fractional flow formulation. In 1D and incompressible
case, the equations can be written in the fractional flow
formulation,

(φs)t + (f(s)u)x = 0.

Q4,5: Explain this derivation.
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Hyperbolic conservation laws

General form of an hyperbolic conservation law in 1D

st + f(s)x = 0

Fundamental solutions for hyperbolic conservation laws
are given by the Riemann problems

Example: Burgers’ equation: st + (s2)x = 0,

x

ssl

sr

x

s

sl

sr

x

ssl

sr shock

x

s

sl

sr

rarefaction wave
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Fractional flow formulation

Governing equation

(φs)t + (f(s)u)x = 0

Q5: Compute the Riemann solution.

We add capillary pressure, pc(s).

(φs)t + (f(s)u)x − (g(s)sx)x = 0

Q6,7: Derive the equation. Find expressions for f and
g. Solve the equation numerically.
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Traveling wave solution

The equation

(φs)t + (f(s)u)x − (g(s)sx)x = 0

is no longer a hyperbolic conservation law. We do not
have Riemann solution.
Q8: Investigate the existence of traveling waves,

s(t, x) = ŝ(x− ct)

x

s
sl c

Find sl and velocity c.

19



Relative permeability

Relative permeabilities are empirical data

We have

uα =
krα(sα)

µα
K∇p

The formulation allows for immobile oil or water

Q9,10: What are the Riemann solutions and the
traveling waves for the corresponding fractional flow
formulation?
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Vertical Equilibrium Approximation - Single Phase

The effects of gravity have the smallest timescale.

We use hydrostatic approximation in the vertical direction

Governing equations for the incompressible case become

p(x, y, z) = P (x, y) + ρgz,

∇‖ · (
k

µ
∇‖P ) = 0.

This is a reduced model: The advantage is that a 3D
problem becomes 2D. Easier to solve.

Q11,12: Explain how the reduced model is obtained.
Consider the compressible case.
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Vertical Equilibrium Approximation - Multi-Phase

The phases segregate so that the gas remains at the top
of the water

The vertical equilibrium equations (without capillary
pressure) are

λα(sα)
k

µα
(
∂p

∂z
− ραg) = 0,

Q13,14: Compute the solution of the vertical
equilibrium with and without capillary pressure

p

z

h

pg pw

sg

z

0 1 0 1
sg

z

22
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Vertical Equilibrium Approximation - Multi-Phase

Governing equation for the reduced problem:

∂φSα
∂t

+∇‖ · uα = 0,

uα = −Λα(Sα)k∇‖Pα,

Pc(Sg) = Pw − Pg.

Q15: Derive this model equation

Remarkably, the model equation takes the same form as
the original 2D problem with relative permabilities and
capillary pressure.
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Vertical Equilibrium Approximation - Multi-Phase

Fractional flow formulation

∂φs

∂t
+

∂

∂x
(f(s)u− g(s)sx) = 0.

Q16,17: Derive fractional flow formulation. Implement
numerical scheme. Solve for the following inputs

x0

gaswater

x0

z

H

gas
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Vertical Equilibrium Approximation - Capillary

fringe

We add capillary effects and obtain a capillary fringe

z

h

0 1
sg

x0 gas

water

capillary fringe

Q18,19: Find a relation between Sg and h (where
pc(sg(h)) = 0). Derive the reduced model.
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Tilted aquifer

We consider a tilted aquifer

gas water

x

z

g

θ

Q20: Derive the governing equation

∂φsα
∂t
− ∂

∂x
(λα(sα)k(

∂p

∂x
+ραg sin θ))− ∂

∂z
(λα(sα)k(

∂p

∂z
−ραg sin θ)) = 0

Q21: Derive the reduced model and fractional flow
formulation

∂φs

∂t
+

∂

∂x
(f(s)u+ g(s)(−H cos θsx + sin θ)) = 0

Q22: Determine the traveling waves.
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Project work

This is an exercise not an evaluation

You do not have to answer to all the questions

You can work on questions that are not in the text.

Questions!
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