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MATHEMATICAL MODELING OF LITHIUM BATTERY

The transformation of chemical energy into electrical power using redox reactions is the fundamental
process taking place in a battery. When the battery is rechargeable, this process can be reversed to store
electrical energy in a chemical form. Li-ion batteries have the particularity of having very high energy
density : A high amount of energy can be stored in a small volume. This property has been achieved
by clever choices of materials. The discovery of such electrochemical cells is the result of fundamental
research that was acknowledged by the Nobel prize in chemistry in 2019, see the Nobel prize webpage.

The goal of this project is to set up the mathematical models that can capture some of the essential
processes taking place in a battery. When possible, we will use those models to write simulation code
able to predict some properties of the battery.

1. Chemical equilibrium and Gibbs free energy

The chemical potential enables us to measure the amount of energy that a chemical reaction can provide.
Let us consider a system with a constituent that can take two forms X and Y,

X Y.

We denote by nX and nY the number of X and Y, respectively. The Gibbs energy is a function of
pressure, temperature and composition (that is nX and nY). The chemical potential of X is defined as

the µX = ( ∂G
∂nX

)
T,P,nY

and the corresponding expression for µY. For a given temperature T and P , the

equilibrium of a system is given by the state that minimizes the Gibbs free energy is minimum.

Question 1: Show that, for a given total number of constituents n = nX+nY and given pressure
and temperature, the Gibbs free energy is minimum when the chemical potentials of X and
Y are equal, that is

µX = µY.

If µX > µY, then we know that by transforming X into Y (at least in a infinitesimal way), we obtain a
state with lower energy and the system will naturally evolves towards this state - if possible. Kinetics,
which we will discuss later, addresses then the aspect of how fast this evolution will take place. Let us
consider the general reaction of the form,

N

∑
i=1
aiXi 0,

where ai can have a negative sign (for example C + O2 − CO2 0 ). Let dnXi denote the (infinitesimal)
change in the mole number of the chemical specie Xi.
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Question 2: Show that we must have

(1)
1

ai
dnXi =

1

aj
dnXj ,

for all pair i and j. Show that a condition for equilibrium (i.e. the minimization of the
Gibbs energy) is

(2)
N

∑
i=1
aiµXi = 0.

In a battery, we have two active materials at the electrodes which participate in the redox reactions. In
the case of the a lithium battery, good choices are graphite at the negative electrode and transition metal
oxides like Cobalt Oxide, Manganese Oxide, Nickel Manganese Oxide or Iron Phosphate at the positive
electrode. We write the redox reactions in the following simplified form,

Li+ + e– + C6 LiC6 and Li+ + e– + MnO LiMnO

electrolytenegative
electrode

positive
electrode

Li+
LiC6

e–

C6

LiMnO
e–

MnO

We have two equilibrium as depicted in the boxes above, which give us the same number of equations in
term of the chemical potentials. At the negative electrode, we have

µLi+ + µ
ne
e– + µneC6

= µneLiC6
.

At the positive electrode, we have

µLi+ + µ
pe
e–
+ µpeMnO = µpeLiMnO.

We obtain the following difference of potential for the electrons between the negative and positive elec-
trodes,

(3) δW = µnee– − µ
pe
e–
= (µneLiC6

− µneC6
) − (µpeLiMnO − µpeMnO),

The difference δW has the dimension of an energy per mole and corresponds to the work that is needed
to move a mole of electrons from the positive to the negative electrode. This quantity can be directly
related to the electrical potentials Φpe and Φne in Volt, at the positive and negative electrodes through
the Faraday constant F ,

(4) δW = F (Φpe −Φne).
The Faraday constant is the (absolute) charge of one mole of electrons.

Question 3: Explain how (4) derives from (3) and give the “voltage” of a battery as a function
of the chemical potential of its constituents.

2. Kinetics of chemical reactions in solutions

Les us consider again a generic reaction of the form

X Y.

Even if the reaction from X to Y is exothermic (the energy of a mole of X is higher than the one of
a mole of Y), not all the elements X are going to be transformed instantaneously in Y. The reaction
rate depends on the concentrations, temperature and value of the activation energy. Typically, in the
reaction process, the elements (here in the form X) go through an instable state of higher energy before
reaching the new stable state where they take the form of the reaction product (here Y), see Figure
1, where we parameterize the reaction path using a scalar variable ξ and represent the energy level of
element as a function of ξ. To reach the unstable equilibrium state, the element X needs an extra amount
of energy, which corresponds to the activation energy Efa (here, the superscript f is an abbreviation
for forward reaction). Then, it will release the energy Eba while reaching the new stable state where
it takes the form Y (the superscript f stands here for backward). The total energy release is equal to
∆G = Eba − Efa . Using the Boltzmann distribution, we can infer that the probability that the element

https://en.wikipedia.org/wiki/Boltzmann_distribution
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Figure 1. Reaction path and activation energy

X reaches a energy larger or equal to Efa is proportional to e−
E
f
a

RT . Given a constant volume, we define
the concentration of each species cXi

as the number of moles per volume. The kinetic of the reaction,
meaning here the rate of transformation of X in Y and vice-versa, is given by

(5)
dcY
dt

= −dcX
dt

= kfcXe−
E
f
a

RT − kbcYe−
Eba
RT ,

where cX and cY are the concentrations of X and Y and kf and kb are some constants, independent of
the other state variables (T , volume and the concentrations). For the general reaction of the form

(6)
NX

∑
i=1

aiXi

NY

∑
i=1

biYi,

this expression generalizes to

(7)
1

bi

dcYi
dt

= r, 1

ai

dcXi
dt

= −r

for all i, where the reaction rate r is given by

(8) r = kfe−
E
f
a

RT

NX

∏
i=1

caiXi
− kbe−

Eba
RT

NY

∏
i=1

cbiYi
,

for some constant kf and kb.

Question 4: Can you propose an interpretation on equation (5) and its generalization (7)
based on a probability argument (probability that the elements meet and react)? What are
the equilibrium equations? (note that they do note depend on the activation energy but only
on ∆G).

3. Effect of the electrical state of the reaction kinetics

We consider a redox reaction

(9) R O + e–

where O denotes the oxidized species and R denotes the reduced species. When we change the electrical
state, by changing the external electrical potential from some reference potential U0 to U , we change the
reaction function path, as depicted in Figure 2. We relate the change in the reaction Gibbs energies per
mole to the change of electrical potential, again using the Faraday constant,

∆G −∆G0 = FδU = (Eba −Efa ) − (Eba,0 −Efa,0).
The variation in electrical potential is split in two contributions in the change of the forward and backward
activation energies,

Efa −Efa,0 = −βFδU and Eba −Eba,0 = (1 − β)FδU,
for some β ∈ [0,1].
Question 5: Use the kinetic equation (5) and derive a function of the potential difference as
a function of the concentration which holds at equilibrium and which is of the form

(10) δUeq = −
∆G0

F
+ RT
F

ln(cO

cR
) + RT

F
ln( kb

kf
)
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Figure 2. Reaction path and activation energy at some reference potential (dashed
line) and after increasing the electrical potential with δU (plain line). In this figure, we
have δU > 0, as we can see that the energy of the electron get decreased.

Relation (10) will give us how the electrical potential at an electrode-electrolyte interfaces depends on
the concentration of the redox species.

Let us consider an electrode - electrolyte system (say LiC6 and Li+) and we denote by φelde and φelyte the
electric potential in the electrode and the electrolyte. We consider now the case where there is a current
between them. We denote the intensity of the current by i and it corresponds to the amount of positive
charge created per time (unit is Ampere). The value of

η = φelde − φelyte − δUeq

is called the surface overpotential and denoted η and represents the deviation from the equilibrium
potential. If η = 0, there is no charge transfer and otherwise, an electrical current is going to be created
as the result of the electro-chemical reaction.

Question 6: Derive the following relation between the current and the surface overpotential

(11) i = i0 (e−(
(1−β)Fη
RT ) − e(

βFη
RT )) ,

where η = φelde − φelyte − δUeq and

(12) i0 = F (kfcRe
−E

f
a,0
RT )

1−β
(kbcOe

−E
b
a,0
RT )

β

.

Note that the current i is simply defined here as i = −F dce–
dt

where ce− is the number of electrons per

volume (in mol m−3)

4. Charge conservation equation

Let ρ be a charge density and j denote the current density, that is the flow of electric charge per unit of
surface (C s−1 m−2)

Question 7: Explain why the equation

∂ρ

∂t
+∇ ⋅ j = 0

is called the charge conservation equation.

We assume charge neutrality, that is ρ is constant and equal to zero, and consider a cylindric wire of
length L with given imposed uniform electrical potential φL and φR at the extremities and no flux at the
sides, see Figure 3. We assume that the current densities follows the Ohm law given by j = σE, where σ
is the conductivity in Siemens per meter (S m−1), E is the electrical field and E derives from an electrical
potential through the relation, E = −∇φ.

Question 8: Set up and solve the partial differential equation that governs this system and
establish that

U = RI,
for U = φL − φR, I = −∫L j ⋅ ndS = ∫R j ⋅ ndS and R = L

σA
.

Here, A is the area of the wire.
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Figure 3. Illustration of a cylindrical wire with the applied boundary conditions.

5. Activation phase setup

We consider a one-dimensional system with two electrodes and an electrolyte. We impose a current I for
t > 0 and will now consider only the activation phase, that is when t remains very small. Thus, we assume
that no ions are moving in the electrolyte. We assume also that the ion distribution in the electrolyte
is homogeneous (the concentration are constant in space). It means in particular that we will consider
a constant value of i0 in (12). We assume a constant resistance in all the components (electrodes and
electrolyte), which we denote Rne, Rpe and Relyte. We assume also that the potential at the negative
electrode is kept constant. In Figure 4, we plot the potential in the different regions at equilibrium when
t < 0 and illustrates also it will look like for t ≥ 0.

Question 9: Find a relation between the potential drop U = φ+ − φ− and the current I (of the
form U = f(I)).

To simplify expression (11), we take β = 1
2
. In fact, this is also the standard choice in applications.

x

potential

ne elyte pe

φ− φn

φe,n φe,p

φp φ+

Figure 4. Illustration of the activation phase. We plot two configurations : t < 0
(black) and t ≥ 0 (red). The current inside the battery is going from left to right from
states of lower to higher electrical potential. This can be only be achieved by a energy
contribution from battery which is given by the chemical reaction. Note the decrease of
the net difference φ+ − φ− decreases when the battery gets activated.

6. Ion transport in the electrolyte

A liquid electrolyte contains several ions (at least two of opposite charge in order to have charge neutrality)
which move in the solution due the combined effects of an external electrical field and diffusion. For a
ion indexed by i, we will consider the following expression for the flux Ni in mol m−2 s−1,

(13) Ni = −ziuiFci∇φ −Di∇ci
where, for the ion i, zi is the charge , ui is the mobility (in m mol N−1 s−1), ci is the concentration, Di

is the diffusion coefficient. By definition, the current density in a electrolyte is given as

(14) j = F
N

∑
i=1
ziNi.

On the right hand-side of (13), the first term is called the migration term and the second diffusion term.
To understand the migration term −ziuiFci∇φ, let us use classical electrodynamics. The force on a
charged particle (with charge q in Coulomb) is f = qE = −q∇φ. In the only presence of the electrical field,
Newton’s law tells us that the particle velocity will changed at a constant rate (we assume E constant).
However, in an electrolyte, the charged ion will meet resistance at it encounters other molecules (charged
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and neutral) whose resulting effect can be modeled as a friction force, ffriction = − ∣q∣ τ ∣v∣ where v is the
velocity and τ some constant friction coefficient.

Question 10: Relate the coefficient τ with the mobility. Compute the conductivity of the
electrolyte when we neglect the diffusion term.

The governing equations in the electrolyte system are given by mass conservation (for each ion) and
charge conservation. Let us consider a binary electrolyte with two ions of opposite charge. For example,
in the electrolyte of a Lithium battery, we can have a Lithium ion Li+ and a hexafluorophosphate ion
PF –

6 . The governing equations are given by

∂c+
∂t

= u+F∇ ⋅ (c+∇φ) +D+∆c+(15a)

∂c−
∂t

= −u−F∇ ⋅ (c−∇φ) +D−∆c−(15b)

and

(15c) c+ − c− = 0.

The later equation expresses electrical neutrality.

Question 11: Explain how the governing equations (15) are derived. Explain how (15c) follows
from the charge conservation equation, ∇ ⋅ j = 0, and (15a) and (15b).

7. Modeling equations for the whole battery

We consider a 2D battery with two electrodes and an electrolyte. At the external side of the positive
electrode, we impose a constant current and a constant potential at the external face of the negative
electrode. The unknown in each domain are the electrical potential and the concentration of Lithium in
its different form (LiC6, Li+ and LiMnO), see Figure 5. The governing equations in the electrolyte are
given in (15). In the electrodes, the lithium (LiC6 and LiMnO) diffuses and the governing equations in
these domains are given by mass conservation and charge conservation.

(Negative
Electrode)

cne, φne

N

(Electrolyte)

celyte, φelyte

E

(Positive
Electrode)

cpe, φpe

P
given current densitygiven potential

no current

Γ− Γ+

Figure 5. Battery model

Question 12: Write the governing equations in each of the domain (P , N and E). Write down
the boundary conditions and in particular the interface conditions at Γ+ and Γ− where the
chemical reactions with either electron production or consumption occur.

When we impose a uniform current and voltage at the sides and the initial conditions are also uniform,
we have a one dimensional as treated configuration, as treated in Question 9. Let us denote the solution
found there in each domain with the superscript zero and use it as initial solution. We want to derive the
equations for the short time solution, that is t = εt̄ for ε≪ 1 and t̄ ≈ 1. We use an asymptotic assumption

(16) cα(t̄, x) = c0α(x) + εc1α(t̄, x), φα(t̄, x) = φ0
α(x) + εφ1

α(t̄, x)

where α ∈ {ne,pe, elyte}.

Question 13: Use the expansion above to obtain a linear approximation of the governing
equations. Try to solve those numerically.
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8. Volume averaging method and tortuosity

The electrodes are porous to maximize interface area, see Figure 6. It is difficult to resolve all the
geometry of this complicated interface. Therefore, we use a volume averaging method and compute
effective quantities. To introduce the approach, let us consider a half-cell consisting a porous electrode
material surrounded with the electrolyte. The domain consists then of two regions, also called phases
(solid for the electrode, liquid for the electrolyte), which we denote as Ωα where α ∈ {elde, elyte}. For a
given location x̄, we consider a ball B(x̄) centered in x̄ whose radius is chosen so that the ball provides
a representative elementary volume. We denote the set of points of the phase α that are contained in the
ball B(x̄) as

Bα(x̄) = B(x̄) ∩Ωα.

For any scalar field uα defined in the phase α, we define the local volume average and intrinsic volume
average as

uα(x̄) =
1

V (x̄) ∫Bα(x̄)
uα(x)dx and ⟨uα(x̄)⟩ =

1

Vα(x̄) ∫Bα(x̄)
uα(x)dx,

where V (x̄) and Vα(x̄) are the volumes of B(x̄) and Bα(x̄), respectively. The porosity of the phase α is
naturally defined as

εα(x̄) =
Vα(x̄)
V (x̄) .

We have a representative elementary volume when the function εα(x̄) is smooth enough as a function of
x̄. We can compute a volume average formula for the gradient,

(17) ∇xuα = ∇x̄uα +
1

V
∫
S(x̄)

uα(x)n(x)dS,

where S(x̄) denotes the interface region between the two regions contained in the ball B(x̄), that is
S(x̄) = ∂Ωelde ∩ ∂Ωelyte ∩B(x̄).
Question 14: Derive formula (17).

(We recall the generalization of the divergence theorem to gradient given by ∫Ω∇udx = ∫∂Ω undS)

Let us focus first on a simple diffusion equation given by

(18)
∂cα
∂t

+∇ ⋅Nα = 0 with Nα = −Dα∇cα.

Using volume averaging, we will end up with an effective model of the form

∂(εα ⟨cα⟩)
∂t

+∇ ⋅Nα = 0,

where
Nα = −Dα,eff∇⟨cα⟩ .

and Dα,eff is the effective diffusion coefficient. The effective diffusion coefficient relates to the tortuosity
τ through the relation

Dα,eff = ⟨Dα⟩
εα
τ
.

Using (17), we obtain from (18), an expression of the form

(19a) Nα = − ⟨Dα⟩∇cα −∆α

with

(19b) ∆α =Dα∇cα − ⟨Dα⟩∇cα + ⟨Dα⟩
1

V
∫
S(x̄)

cαnαdS.

Now, it is common to use an empirical relation of the form

∆α =D∗ ⟨Dα⟩∇cα.
for a constant D∗.

Question 15: If we assume a constant porosity, meaning that it does not depend on x̄, give a
relation between the tortuosity and the heuristic parameter D∗.

Question 16: Explain how the reaction contributions in the charge and mass balance equa-
tions, which occur at the interface (γ± in Figure 5), can be transformed into a volumetric
source.

Question 17: Write the governing equations in volume average form.
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B(x̄)

Belyte(x̄)

Belde(x̄)
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Figure 6. Metal oxide porous electrode (left). Schematic of the different domains used
in the volume averaging approach (right).
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