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Problem 1 A spinning planet becomes somewhat �attened at the poles because of the
rotation. The �attening is usually expressed as the di�erence between the equatorial radius and
the polar radius, divided by the former. It is expected to depend on the universal constant of
gravitation G (units m3kg−1s−2), the planet's density ρ, its volume V , and the angular velocity
Ω. What can you say about this dependence based on dimensional analysis?

Problem 2 The equation of motion for an electron freely moving in an electric �eld can
be be written in relativistic mechanics as

d

dt

mv√
1− |v|2

c2

= eE

where m is the rest mass of the electron, e is the electric charge of the electron, E is the electric
�eld, c is the speed of light, and v is the velocity of the electron.

Below we let E = Ei be a constant �eld in the x direction, and we assume that the electron
starts with a velocity v(0) = uj in the y direction, where 0 < u � c.

a) Describe a suitable scaling for the early parts of the motion, and show that the equation
of motion together with initial data can be written in scaled variables as

d

dt

v√
1− ε|v|2

= i, v(0) = j,

where we as usual write v in place v′, and so forth (�dropped the primes�).
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b) Find v0 and v1 in the perturbation expansion

v(t) = v0(t) + εv1(t) + O(ε2).

For roughly how large t does this approximation get really bad?

Problem 3 Draw a bifurcation diagram in the (µ, x) plane for the dynamical system

ẋ = (µ− x)(x2 + µ2 − 2µ)

showing the stable points of equilibrium as a solid curve, and the unstable ones as a dashed
curve.

Problem 4 A method that has been used to measure climatic variations of temperature
of the past thousands of years, is to drill a hole in the Greenland ice cap and measure the
temperatures in the borehole. If not for heat conduction in the ice, each layer of ice would
�remember� the temperature it had when it fell as snow, and one could recover a perfect
temperature history in this way.

Grossly simpli�ed we can say that the ice cap grows by a constant amount of snow falling each
year, in the order of a meter. As the snow is buried in more snow, it is compacted into a roughly
30 cm thick layer of ice. We simplify further and assume that this happens instantaneously.

Let x be the distance into the ice from the top. Let the ice grow with a speed v, so that the
snow that falls at time t0 is found in x = v · (t − t0) at time t > t0. Write u(x, t) for the
temperature in the ice, and U(t) for the surface temperature at time t.

a) Derive a model on the form

∂u

∂t
+ v

∂u

∂x
= κ

∂2u

∂x2
x > 0,

u(0, t) = U(t)

and brie�y describe the signi�cance of each term in the di�erential equation and what
assumptions lie behind the model.

b) For a given time scale T the model can be rescaled in the form

∂u

∂t
+

∂u

∂x
= ε

∂2u

∂x2
x > 0,

u(0, t) = U(t),

where we have already �dropped the primes�. What is ε in this equation? What is the
solution of the problem if ε = 0?



TMA4195 Mathematical modeling 2005�12�15 Page 3 of 4

The coe�cient of di�usion for heat in ice is κ ≈ 1000 m2/Gs. (1 Gs � one gigasecond �
is somewhat less than 32 years.) For the Greenland icecap we can set v ≈ 10 m/Gs. For
roughly what values of the time scale T will heat conduction play an important role?

The problem comes with a �built in� time scale and a length scale, which appear by
scaling the equation to balance all three terms in the di�erential equation. What are
these time and length scales for our model of the Greenland icecap?

(Do not try to solve the equations in this problem for ε > 0, not even using perturbation
methods. A thorough analysis of this problem will require more time than we have available
here.)

Problem 5 As you can see, this problem comes with a lot of text. There is not so very

much computation to be done, but there are quite a number of things to keep track of. This is

obviously the �hard� part of the problem set. It is probably not a good idea to begin on this

problem until you have the rest of the problems under control.

We now return to the �attened planet from problem 1. After posing and scaling the problem,
we are left with the following, where we assume that the planet has uniform density and rotates
around the z axis:

We use spherical coordinates (x = r cos θ sin ϕ, y = r sin θ sin ϕ, z = r cos ϕ). Because of
rotational symmetry about the z axis, the angle θ does not appear in any functions, so we use
the notation V (r, ϕ) etc. The interior of the planet is given by r ≤ F (ϕ), where

(1)

∫ π

0

F (ϕ)3 sin ϕ dϕ = 2

(which corresponds to the volume of the planet being 4
3
π). The potensial V in the gravitaional

�eld satis�es

(2) ∇2V =

{
3 r < F (ϕ),

0 r > F (ϕ).

It will suit our purposes to divide the gravitational potential in two functions, an �inside� part
Vi for r ≤ F (ϕ) and an �outside� part Vu for r ≥ F (ϕ). The natural continuation of (2) for
r = F (ϕ) is

(3) Vi

(
F (ϕ), ϕ

)
= Vu

(
F (ϕ), ϕ

)
,

∂Vi

∂r

(
F (ϕ), ϕ

)
=

∂Vu

∂r

(
F (ϕ), ϕ

)
.

Furthermore, limr→∞ V = 0 and

(4) V
(
F (ϕ), ϕ

)
− 1

2
εF (ϕ)2 sin2 ϕ = constant

(This corresponds to the surface being locally �horizontal� when the centrifugal force is ac-
counted for. For the Earth, ε ≈ 0.00345. In general, ε is small.)
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When ε = 0 you may assume as a given that the problem has the solution F (ϕ) = 1 and
V = V0, where

(5) V0 =

Vi0 = 1
2
r2 − 3

2
r ≤ 1,

Vu0 = −
1

r
r ≥ 1.

When 0 < ε � 1 it is natural to assume that we can write

F (ϕ) = 1 + εf(ϕ) + O(ε2), V = V0 + εV1 + O(ε2).

The di�culty here is that the coupling condition (3) is given on the planetary surface, which
is unknown. The solution of this di�culty is to extrapolate Vi and Vu to r = 1 and write an
adjusted coupling condition there instead. We use Taylor's formula:

Vi

(
1 + εf(ϕ), ϕ

)
= Vi(1, ϕ) + εf(ϕ)

∂Vi

∂r
(1, ϕ) + O(ε2)

and correspondingly for Vu. Insert Vi = Vi0 + εVi1 +O(ε2) and correspondingly for Vu. Use the
solution (5) for V0 and show that Vi1(1, ϕ) = Vu1(1, ϕ).

Use Taylor's formula for ∂V/∂r the same way, and explain how that leads to

(6)
∂Vu1

∂r
(1, ϕ)− ∂Vi1

∂r
(1, ϕ) = 3f(ϕ).

Next, show using (1) that

(7)

∫ π

0

f(ϕ) sin ϕ dϕ = 0,

and using (2) that ∇2Vi1 = ∇2Vu1 = 0. Show by extrapolation to r = 1 that (4) yields

(8) V1(1, ϕ) + f(ϕ)− 1
2
sin 2ϕ = constant.

Finally, show that there is a solution on the form

Vi1 = ar2P2(cos ϕ),

Vu1 = ar−3P2(cos ϕ),

and determine a and f(ϕ).

Formulas you may take for granted: The Laplace operator in spherical coordinates is

∇2V =
1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2 sin ϕ

∂

∂ϕ

(
sin ϕ

∂V

∂ϕ

)
+

1

r2 sin2 ϕ

∂2V

∂θ2
.

P2 is the Legendre polynomial P2(w) = 3
2
w2 − 1

2
. Both r2P2(cos ϕ) and r−3P2(cos ϕ) satisfy

the Laplace equation ∇2V = 0.


