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Solution with additional comments

1 Problem

A cookbook states a cooking time of 3.5 hours at the oven temperature Tyyen for a 8 kg turkey.
For a 10 kg (American) turkey, 7 hours is suggested.

(a) How can we derive the heat equation

orT

— = kV?T, 1
e (1)
where the density p, the heat capacity c, and the heat transmission k, are constant?

We assume that the turkey’s heating follows the equation 1. The heat transfer through the
turkey’s surface follows Newton’s law of heating,

7kVT|surface = ﬁ (TOVGH - Tsurface) ) (2)

where B is a constant.

(b) The cooking time, ts, has to be dependent on, in addiction to the parameters above, the
turkey’s diameter D, the temperature difference between the oven and the turkey before (ATy) and
after (ATy) the cooking (We assume that all turkeys are geometrically similar!). Use dimension
analysis to find an expression for ts (Hint: combine the parameters in Eqns. 1 and 2 before you
use them in the dimension analysis).

(c) After short time, the turkey’s surface reach the same temperature of the oven. This implies
that equation 2 simplifies to Toven = Tsurtace, and the parameter with [ disappears. Use this
information to simplify dimension analysis and show that ts is proportional to the turkey’s weight
to the power 2/3. How does this match with what has been indicated in the cookbook?

Solution:

(a) The heat density is given by pcT, and the heat flux is j = —kVT. Without source terms,
we obtain the integral conservation law

d/chdV—l—/ j-ndo =0,
dt Jr OR

This implies - by moving the derivative into the integral, using the divergence theorem, and letting
R vary - the differential formulation

T
pcc(li—t +V - (—=kVT)=0.

(b) We follow the hint in the Problem and assume that

ts = ts <D7/i7 %7 A7_‘07AZZ—'1) )

where the heat diffusion coefficient is k = k/ (pc).



Digression: One could think that Tyyrface and VT'| ¢ .. should also be considered. However,
these quantities are dependent on time and dependent on the temperature variation. This variation
is dependent on (/k and other parameters.

From the equations, we derive that [s] = s/m? and [3/k] = m~!. Thus, we are able to state
the dimension matrix as

t, | D |k | B/k | ATy | ATh
m|O0|1]2]-1] 0 0
s|1l0]1] 0] O 0
K|0]| o0 0 1 1

The matrix has rank 3 and, hence we have 3 dimensionless combinations which are easily derived:

_ Kig _Dp ATy
771*D277T2* k ,7T37AT1,
Thus 71 = ® (7, 73), or
D? Dp AT
o= Dg (P8 20
K k ATl

The alternative expression

1 _ (DB ATy
ts_m62‘1}< k ’AT1>

is equally correct.

The most elegant solution (found by one of the students) is however to scale the equations 1
and 2 using D for length and t; for time. Then 7 and 7y drop out immediately.

(c) If we get rid of 3, we find
D? (AT,
to=—0 (22,
K <AT1>

Since the weight can be written as W = GpD?3, where G is a constant dimensionless ”geometry
factor”,

2/3
o= WG (ATfJ) o W,

KR ATl
With cooking time for the 3 kg turkey is 3.5 hours, the cooking time for a 10 kg turkey should be
(assuming that ATy and AT remain the same)

10 10

2/3 2/3
ts (10kg) =t (3kg) <3> =35 <3> hour = 7.8 hour.

Eight hours for a 10 kg turkey would therefore be a better rule than seven hours.

2 Problem

Let us consider the problem

d?y dy
S Y 9 0<t<1.0 1
gdt2+dt ,0<t<1, 0<ekK ],

y(0)=y(1)=1



What do we call such problems? Find, to leading order in e, the outer, inner, and uniform
solutions to the problem (Hint: the boundary layer is near t = 0).

Solution:

Since this is an equation with a small parameter in front of the highest derivative, it is called
a singular perturbation problem.

The leading order outer solution, yo (t), is found by setting € = 0,

dyo

= 2t.
dt

The general solution is A + 2, but it is impossible to fulfil both the boundary conditions, since
y (0) = 1 implies that yo (t) = 1 +#2, and y (1) = 1 implies that yo (t) = t2.

Given the hint, it is reasonable to try a new time scale, t = 7 around 0. This leads to

€ 1
ﬁYTT + EYT = 20T.
By choosing § = ¢, the equation becomes
Y, + Y, =227,

with a general solution to the leading order, Yy (1) = A + Be™™ (One could think that § = /2
was a possibility, but this would give an equation Yy, = 0 which does not help us). If we fulfil the
boundary condition Y; (0) = 1, we obtain A+ B =1, or

Yo(r)=1+A(e7—1).

The solution would satisfy both boundary conditions if we set A = 0, but we then apply Yg outside
its admissible region (this misuse of singular perturbation is sometimes seen in science) .

The matching condition is, in its simplest form, given by
lim yo (£) = lim Yo ().
t—0 T—00

and this leads to, by using yo (1) = 1,
0=1-A,

or A = 1. Thus, the uniform solution to the leading order is

e

u t _
yé):yo(t)JrYo( >—y0(0):t2+e tfe,

The error around ¢ = 1 is totally negligible.

Digression (not part of the exam): The exact solution to the equation is
Yer (t) = A+ Be ¢ + % — 2te,
and, thus, with a negligible error O (6*1/5),
Yer = 12 + e /E 4 2 (1 —eE —t) .

Note that "to the leading order in £” means the O (1) term and not O (¢).



3 Problem

Let x* (t*) be the cod population in an ocean region as a function of time t*. The region may hold
a maximum sustainable amount of fish equal to K, and, as long as fishing is prohibited and x* <
K, z* will grow with rate r, dx*/dt* = ra*. We assume that the amount of caught fish per time
unit is ax* B, where B is the number of participating boats , and « is a constant.

(a) State a model for the amount of fish such that, using a suitable scale, we obtain the form

%(t):x(t)—$2(t)—u$(t)‘

(b) Discuss the equilibrium points for different values of . Sketch the possible trajectories path
for the amount of fish.

(¢) Find an expression for the number of boats giving an optimal management of the fish
TeSouUTCes.

Solution:

(a) The equation suggests we should assume a logistic model in absence of fishing activities.
Thus, we find immediately that

We scale the model by setting

" =zK,
1
t* = —t
T
Thus,
dz
Kr% =rKz(l—2z)—aKzB,
or

aB
p=—
r
(b) The equilibrium solutions are
Ty = 07
T = 1-— M.

Using straightforward linear stability and

d(z(l—1z)— px)
dx

=1-2z—p,

we obtain that x1 is stable for ;4 > 1 and unstable for p < 1, while z9 is stable for 4 < 1 and
unstable for > 1 (the physical acceptable points are clearly x1, zo > 0).



If 4 =1, the equation becomes

T = —$2,

and both equilibrium solutions coincide at « = 0. This equation can be solved generally:

1
—=t+C,
T
i.e.
1
r=-—:
t+C

and also x = 0, as obviously is a solution. If we start in 2 (0) > 0 and close to 0, we have x (t) — 0
when t — oo. If, on the contrary and un-physically, = (0) = 1/C < 0, we have x (t) — —oo when
t — —C'. The equilibrium point is stable for ;4 = 1, since we have that = > 0, and the answer is
as follows:

xs =max{l—pu,0}, pn>0

is stable, while
T, =0, 0< u<l,

is unstable.

(c) A constant outtake per time unit can be expressed as

Q = (aB)a} = (aB) K(1 - 1) = (ur) K(1 - ) = Krp(1 - p), (3)

and this has a maximum for p = 1/2, that is B = r/(2«), and =5 = K /2.

4 Problem

In this problem we study the traffic along a road (a one-way street towards oo and without in- or
out-flow for the moment). We further assume that all variables are scaled so that the car density
p 1s between 0 and 1, and the car speed v is 1 — p.

(a) Show how one derives an expression for the speed U of a shock in the car density, and that
we in this case obtain U = 1 — p1 — pa, where p1 and pa are the densities on each side of the
shock.

Assume that the car density along the road for t < 0 is equal to 1/2. Between t =0 and t =1
the cars get a red light due to a pedestrian crossing placed in x = 0. For t > 1, the light is green.

(b) Find the solution p (x,t) for t > 0. (Hint: make a sketch of the situation in an x-t-diagram.
Show that the solution for p has to be determined in 5 different regions, where the values in 4 of
them is obvious. In order to find the regions, one has to find their borders).

A second road (with similar properties as the first one) is now merging from the side with the
first one.

(¢) Which conservation law has to be fulfilled at the merging point? Assume that the fluz on
the first road is constant, j1 = 1/8, and that the density is less than 1/2. Describe (without
further calculations) the evolution of the car density on the first road when the density pa on the
second road increases from 0 to 1. The cars on the first road are flexible and let entering cars
merge whenever it is possible. Consider in particular what happens when the flux on the second
road reaches 1/8.

Solution:
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Figur 1: Sketch of the situation around the crossing.

This is the so-called standard model: 0 < p <1, v =1—p, 7 = p(1 — p). The conservation

law can be written as )

G | riasit)—i@=o @

or in differential form,
pe+(p(L=p)), =pe+ (1 —2p) pz = 0.

(a) We find out the shock speed by considering a shock with speed U in the interval [a, b]. The
density to the left of the shock is p;, while the one on the right ps. By using the equation 4, we
obtain

(p2 =p1)U =pa(1=p2) =p1 (1 = p1),
or,
U=1-p1—pa.
(b) For p = 1/2 the characteristics are vertical, and we have a situation as sketched in figure
1.

For the shock OA, pa = 1 and p; = 1/2, in other words, the shock speed is Ups = —1/2. In
an analogous way we find that Upp = 1/2, Ugp = 1 and Ugsq = —1. The point A is at x = —1,
t =2, and B is at x = 1, t = 2. Within the rarefaction wave, the solution is given by

z=c(p)t-1)=01=-2p)(t-1),

pe(w,t)=;<1—tf1>-

It remains to find the shocks AC and BD. In a point (z,t) on the shock AC we have that
p1 = 1/2, while ps = pe (z,t) = § (1 - %) Therefore,

=13 (- 25) -ri

6

or
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Figur 2: The second road merges with the first road.

The equation for the shock becomes

The equation is separable and the solution is z4c (t) = —v/t — 1, t > 2. In a equivalent way we
find xgp = v/t — 1. Thus, the solution is completely determined.

(c) The situation is sketched in figure 2. Since the crossing is not a parking lot, we must have
J1+ J2 = Jout-
We know that j; = 1/8, but the equation

. 1
]lzgzp(l—P)

1 1
ST
PL2 =5 \/;

Here, since we also know that p; < 1/2, the density is equal to % — \/g .

has to possible solutions,

As long as ja < 1/8 the flux jout < 1/4, the maximum value.

When jo passes 1/8, cars will pile up on the second road in front of the crossing. Since the
outflow from the second way can at most be 1/8, the cars’ density just before the crossroad
becomes

1 1
p2f = B + 3
In the back of the line we have a shock moving backward with speed

U=1-p2— pay.

up to p2 = pay. When po increases further from pyy, the flux of the cars on the second road will
be so small (<1/8) that all may enter without problems!



