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Solutions to Exam in TMA4195 Mathematical Modeling December 2010

Problem 1

a) When a = 0 equation (1) is the logistic equation for population growth with growth rate
r and carrying capacity K. The a-term is a harvest or death term.

Scales:

dt*
Take N* = NyN, t* = Tt, scale (1), and balance terms:

Since Ny > K, we see that < 0 for t < 1, and hence max N* = Nj.

dN* NQdN (1) NO
=——=rNgN|[1——N | —aNyN
a~ T dt | ° ( K o

1 K

=T = ~
T 1—% —« rNo
K

since o < r and % > 1.

. * __ x . K
Scales: N* = NoN, t* = 5-t.

b) System (2) models e.g. growth of 2 populations sharing limited resource. The death-
rates («, S-terms) depend on the size of the competing population. When «, 8 = 0, the
populations experience logistic growth.

Equilibrium points, when g =0

ozj—j:fl(%y):x(l—x)—axy ==z=0orz=1—ay
dx
0=er =fole,y) =y(l-y) =Sy=0ory=1

Solutions = equilibrium points:

(a:,y) = {(070>7 (07 1)7 (170)7 (1 -, 1)}
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Stability:
oh o
.| 9z 0O | 1-22—-ay -«
Jacobian = % 0_}/2 = [ 0 1—9y |
Jor Oy
and the eigenvalues are \y =1 — 2z — ay, \s = 1 — 2y. Hence
‘ (07 0) (07 1) (17 O) (1 — Q, 1)
A1 1 1—a(>0) -1 —(1—-a)(<0)
Ao 1 -1 1 —1
unstable unstable unstable stable
Problem 2 The dimension matrix A is
H p S m N h k
m|2 -1 2 0 0 2 2
s |—-2 -2 -2 0 0 -1 =2
kg| 1 1 1 1 0 1 1
K| 0 0O -1 0 0 -1

Obs:

e rankA = 4, Buckingham = 7 — 4 = 3 dim.less combinations.

o N, % are dim.less, and the remaining variables independent of K.

There is one remaining dim.less combination, and we try with —2

pembhe -
2=—a+2c
T 1 | 2
P l=a+b+c

Solution:
a=2/5, b=-3/5, ¢=6/5
Buckingham’s w-theorem: The most general form of
H=®(p,S,m,N,h,k)

18

H p2h6 %
p2/5m—3/5,6/5 = W(N, S5/k) or H (—) U(N,S/k)

for an arbitrary function W.
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Problem 3

1. Outer problem (e = 0):

d
%—l—eyo =0, yo(l)=—-In2

Separable equation:

e Pdyy = —dx, yo(l)=—1In2
= —e P =—ax-1

= —yo=In(z+1)

2. Boundary layer thickness ¢:
Rescale: © =ds, y =Y,

ey 1wy,
02 ds? 6 ds o

and determine the dominant scale:

. 2
i) E%N%:>5%N%:>5:e
2 2
Check: ey:eY~1<<%~5%%:e‘;Tg ok!
.o 2
i) et veV= S~1=0=/

Check: j—g = %% ~ \/Lg > 1 ~ €Y not consistent!

3. Inner problem:

Rescale equation: x = dx =es,y =Y

1d?Y  1dY
— 4+ =0, Y(0)=1

cas T eds
=Y +Y +e¥ =0, Y(0)=1

Solve for e = 0:

VY =0, Y(0)=1
=Yy=A*-1)+1

4. Matching in the intermediate region:
() = Jiny Yols)

=>0=-A+1=A=1
=Yy=¢"°
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5. Uniform solution:

() = yo(s) + Yol /€) = lim yo(a)
= —In(z+1) e/

Problem 4

a) Fick’s law: Diffusive flux 73 = —DV¢*
Fluxes:

. N S .

Diffusive : 3, = —DVc",

Convective :  j5 = uc”,
x

Total : 3" = —DVc* + uc”.
General conservation law over ) C R?:

d -
(1) —//c*dxdy:—/ j*‘ﬁda—i-//q*d:cdy
dt* J Jo o9 Q

change in 2 = inflow — outflow + production

where 7* is as above and
*

q- = —rc

since there is no production at ¢t* > 0 and the loss of particles per time is proportional
to c*.

b) Obs:
i) & [[,c*dz dy = [[,¢;. dvdy if ¢* is smooth enough.
i) [, jteido = [ oV .7 dr dy by the divergence theorem.

Hence
(1) <:>// ¢+ V- +rc dady = 0,
Q
and since this is true for any nice 2 in R,
Che +V-+rcf=0 inR? ¢ >0,
or

¢ — V- (DVc")+ V- (uc*)+rc"=0, t">0.
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Alternative: Fix xy € R?, take Q = B,(zg) = {|z — x| < r} then

1 -
(1) & — // (¢ +V 7" +rc)dedy =0
471'7’8 B (z0) t

and send 79 — 0 using the mean value theorem for integrals (or Taylor expansion of ¢*, j*
about xg).

Initial condition: At t* = 0, all the ash is consetrated at (z*,y*) = (0,0), so the consen-
tration has a point mass or delta function at (0, 0):

(2", y",0) = Co(z")d(y")

where C' is such that
Ny = // (z,y,0 dxdy—//C(S y) dxdy = C.
RQ

Problem 5

a) v(p) =1—pand j(p) = pv(p). Now we solve

pe+(1—=2p)p. =0 x <0, t>0,
{% r <0, t=0,
P = 1 \/5
5 + e T = 07 t > 0,
The method of characteristics (z(t) x(t),t)) gives

=(1-2z2) xz(ty) = xo
=0 2(to) = p(x(to), to) = {i

Solutions:

x:x0+(t—t0)(1—2p(xo,t0)):{(t_to)( ﬁ) zo = 0.

laNE
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Characteristics collide = Shock solution:

i x < S(t)
plz,t) = :

{% +Y20 1> S(t)
where the shock curve S(t) satisfy Rankine-Hugoniot
J(p(S™ () = i (p(S7(1))

p(S™ () = p(S*(1))

S(t) = (
J0-9)-(3+2) (-9

and S(0) = 0, hence

b) ji(p) = p(1 — p) and j3(p) = p(1 — p), while
(2) J1(0,1) + j2 = 73(0,1),

is conservation of mass in the junction (what flows in must flow out). Since max jz = +
(max capacity on Road 3), the combined traffic on Road 1 and 2 is too big for all ¢ > 0.
Therefore we will have max flux on Road 3 for all times:

1

1 1
3(0,t) = — = 11(0,8) = = — o = —.
.]3( ) ) 4 @ ]1( ) ) 4 J2 ]

c) The car speed is v = 1 — p, and © = —1 belongs to Road 1. From b) j,(0,t) = é and we

must solve
pr+(1—2p)p, =0 x<0,t>0
alp)=5 x=0,t>0
,0—% r<0,t=0

We convert from flux condition to a Dirichlet condition (a condition on p):

V2
4

=hp)=p(l=p)=p= = P

1
8
Case I: p=p_at x =0.
Characteristics (see a)):  © =z + (t —to)(1 — 2p(zo,t0)), 2z = p(xo, o).
1

Characteristics from ¢t = 0: 2z = 3 = T = .

Characteristics from 2 =0: z=p_ =z = (t—1o)(1 —2p_) = ‘g(t —tp).
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7

Characteristics leave the domain {x < 0} and we can not impose p = p_ at © = 0. More-
over, flux continuity (conservation of cars) implies that 1 = lim j(p(0~,t)) = j(0,t) # &,
a contradiction.

Case IT = a) and is ok — in this case we have a inflow boundary and the flux condition
is satisfied. By a),

v(=1,t) =1—p(—1,1)

Cf1epp 22t < -1
1-1 1< -2
B 12 1592
: 0 <t <2V2.



