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Solutions to Exam in TMA4195 Mathematical Modeling December 2010

Problem 1

a) When α = 0 equation (1) is the logistic equation for population growth with growth rate
r and carrying capacity K. The α-term is a harvest or death term.

Scales:

Since N0 > K, we see that
dN∗

dt∗
< 0 for t ≪ 1, and hence maxN∗ = N0.

Take N∗ = N0N , t∗ = Tt, scale (1), and balance terms:

dN∗

dt∗
=

N0

T

dN

dt

(1)
= rN0N

(

1− N0

K
N

)

− αN0N

⇒ T =
1

r

(

1− N0

K

)

− α

∼ K

rN0

since α < r and N0

K
≫ 1.

Scales: N∗ = N0N , t∗ = K
rN0

t.

b) System (2) models e.g. growth of 2 populations sharing limited resource. The death-
rates (α, β-terms) depend on the size of the competing population. When α, β = 0, the
populations experience logistic growth.

Equilibrium points, when β = 0

0 =
dx

dt
= f1(x, y) = x(1− x)− αxy ⇒ x = 0 or x = 1− αy

0 = ǫ
dx

dt
= f2(x, y) = y(1− y) ⇒ y = 0 or y = 1

Solutions = equilibrium points:

(x, y) = {(0, 0), (0, 1), (1, 0), (1− α, 1)}.
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Stability:

Jacobian =







∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y






=

[

1− 2x− αy −α
0 1− 2y

]

,

and the eigenvalues are λ1 = 1− 2x− αy, λ2 = 1− 2y. Hence

(0, 0) (0, 1) (1, 0) (1− α, 1)
λ1 1 1− α(> 0) −1 −(1− α)(< 0)
λ2 1 −1 1 −1

unstable unstable unstable stable

Problem 2 The dimension matrix A is

H p S m N h k
m 2 −1 2 0 0 2 2
s −2 −2 −2 0 0 −1 −2
kg 1 1 1 1 0 1 1
K 0 0 −1 0 0 0 −1

Obs:

• rankA = 4, Buckingham ⇒ 7− 4 = 3 dim.less combinations.

• N, S
k

are dim.less, and the remaining variables independent of K.

There is one remaining dim.less combination, and we try with H
pambhc :

[H]

[p]a[m]b[h]c
= 1 ⇒











2 = −a+ 2c

−2 = −2a− c

1 = a+ b+ c

Solution:

a = 2/5, b = −3/5, c = 6/5

Buckingham’s π-theorem: The most general form of

H = Φ(p, S,m,N, h, k)

is

H

p2/5m−3/5h6/5
= Ψ(N,S/k) or H =

(

p2h6

m3

)
1

5

Ψ(N,S/k)

for an arbitrary function Ψ.
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Problem 3

1. Outer problem (ǫ = 0):

dy0
dx

+ ey0 = 0, y0(1) = − ln 2

Separable equation:

e−y0dy0 = −dx, y0(1) = − ln 2

⇒ −e−y0 = −x− 1

⇒ −y0 = ln(x+ 1)

2. Boundary layer thickness δ:
Rescale: x = δs, y = Y ,

ǫ

δ2
d2Y

ds2
+

1

δ

dY

ds
+ eY = 0,

and determine the dominant scale:

i) ǫ d
2y

dx2 ∼ dy
dx

⇒ ǫ
δ2

∼ 1
δ
⇒ δ = ǫ

Check: ey = eY ∼ 1 ≪ 1
ǫ
∼ ǫ

δ2
d2Y
ds2

= ǫd
2y

ds2
ok!

ii) ǫ d
2y

dx2 ∼ ey ⇒ ǫ
δ2

∼ 1 ⇒ δ =
√
ǫ

Check: dy
dx

= 1
δ
dY
ds

∼ 1√
δ
≫ 1 ∼ ey not consistent!

3. Inner problem:
Rescale equation: x = δx = ǫs, y = Y

1

ǫ

d2Y

ds2
+

1

ǫ

dY

ds
+ eY = 0, Y (0) = 1

⇒ Y ′′ + Y ′ + ǫeY = 0, Y (0) = 1

Solve for ǫ = 0:

Y ′′
0 + Y ′

0 = 0, Y0(0) = 1

⇒ Y0 = A(e−s − 1) + 1

4. Matching in the intermediate region:

lim
x→0

y0(x) = lim
s→∞

Y0(s)

⇒ 0 = −A+ 1 ⇒ A = 1

⇒ Y0 = e−s
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5. Uniform solution:

yu(x) = y0(s) + Y0(x/ǫ)− lim
x→0

y0(x)

= − ln(x+ 1) + e−x/ǫ

Problem 4

a) Fick’s law: Diffusive flux ~j∗D = −D∇c∗

Fluxes:

Diffusive : ~j∗D = −D∇c∗,

Convective : ~j∗C = ~uc∗,

Total : ~j∗ = −D∇c∗ + ~uc∗.

General conservation law over Ω ⊂ R
2:

d

dt∗

∫∫

Ω

c∗dx dy = −
∫

∂Ω

~j∗ · ~n dσ +

∫∫

Ω

q∗dxdy(1)

change in Ω = inflow − outflow + production

where ~j∗ is as above and

q∗ = −rc∗

since there is no production at t∗ > 0 and the loss of particles per time is proportional
to c∗.

b) Obs:

i) d
dt∗

∫∫

Ω
c∗dx dy =

∫∫

Ω
c∗t∗ dx dy if c∗ is smooth enough.

ii)
∫

∂Ω
~j∗ · ~n dσ =

∫∫

Ω
∇ ·~j∗ dx dy by the divergence theorem.

Hence

(1) ⇔
∫∫

Ω

c∗t∗ +∇ ·~j∗ + rc∗ dxdy = 0,

and since this is true for any nice Ω in R
2,

c∗t∗ +∇ ·~j∗ + rc∗ = 0 in R
2, t∗ > 0,

or

c∗t∗ −∇ · (D∇c∗) +∇ · (~uc∗) + rc∗ = 0, t∗ > 0.
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Alternative: Fix x0 ∈ R
2, take Ω = Br(x0) = {|x− x0| < r} then

(1) ⇔ 1

4πr20

∫∫

Br(x0)

(c∗t∗ +∇ ·~j∗ + rc∗) dxdy = 0

and send r0 → 0 using the mean value theorem for integrals (or Taylor expansion of c∗, j∗

about x0).

Initial condition: At t∗ = 0, all the ash is consetrated at (x∗, y∗) = (0, 0), so the consen-
tration has a point mass or delta function at (0, 0):

c∗(x∗, y∗, 0) = Cδ(x∗)δ(y∗)

where C is such that

N0 =

∫∫

R2

c∗(x, y, 0) dxdy =

∫∫

Cδ(x)δ(y) dxdy = C.

Problem 5

a) v(ρ) = 1− ρ and j(ρ) = ρv(ρ). Now we solve











ρt + (1− 2ρ)ρx = 0 x < 0, t > 0,

ρ =

{

1
2

x < 0, t = 0,
1
2
+

√
2
4

x = 0, t > 0,

The method of characteristics (z(t) = ρ(x(t), t)) gives











ẋ = (1− 2z) x(t0) = x0

ż = 0 z(t0) = ρ(x(t0), t0) =

{

1
2

t0 = 0
1
2
+

√
2
4

x0 = 0.

Solutions:

x = x0 + (t− t0)(1− 2ρ(x0, t0)) =

{

x0 t0 = 0

(t− t0)
(

−
√
2
2

)

x0 = 0.

x0

t0
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Characteristics collide ⇒ Shock solution:

ρ(x, t) =

{

1
2
, x < S(t)

1
2
+

√
2
4
, x ≥ S(t)

where the shock curve S(t) satisfy Rankine-Hugoniot

Ṡ(t) =
j(ρ(S−(t))− j(ρ(S+(t))

ρ(S−(t))− ρ(S+(t))

=

1
2

(

1− 1
2

)

−
(

1
2
+

√
2
4

)(

1
2
−

√
2
4

)

1
2
−
(

1
2
+

√
2
4

)

= −
√
2

4

and S(0) = 0, hence

S(t) = −
√
2

4
t

b) j1(ρ) = ρ(1− ρ) and j3(ρ) = ρ(1− ρ), while

j1(0, t) + j2 = j3(0, t),(2)

is conservation of mass in the junction (what flows in must flow out). Since max j3 =
1
4

(max capacity on Road 3), the combined traffic on Road 1 and 2 is too big for all t > 0.
Therefore we will have max flux on Road 3 for all times:

j3(0, t) =
1

4
⇒
(5)

j1(0, t) =
1

4
− j2 =

1

8
.

c) The car speed is v = 1− ρ, and x = −1 belongs to Road 1. From b) j1(0, t) =
1
8

and we
must solve











ρt + (1− 2ρ)ρx = 0 x < 0, t > 0

j1(ρ) =
1
8

x = 0, t > 0

ρ = 1
2

x < 0, t = 0.

We convert from flux condition to a Dirichlet condition (a condition on ρ):

1

8
= j1(ρ) = ρ(1− ρ) ⇒ ρ =

1

2
±

√
2

4
=: ρ±.

Case I: ρ = ρ− at x = 0.

Characteristics (see a)): x = x0 + (t− t0)(1− 2ρ(x0, t0)), z = ρ(x0, t0).

Characteristics from t = 0: z = 1
2

⇒ x = x0.

Characteristics from x = 0: z = ρ− ⇒ x = (t− t0)(1− 2ρ−) =
√
2
2
(t− t0).
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x

t

Characteristics leave the domain {x < 0} and we can not impose ρ = ρ− at x = 0. More-
over, flux continuity (conservation of cars) implies that 1

4
= lim j(ρ(0−, t)) = j(0, t) 6= 1

8
,

a contradiction.

Case II = a) and is ok – in this case we have a inflow boundary and the flux condition
is satisfied. By a),

v(−1, t) = 1− ρ(−1, t)

=

{

1− ρ+ ,−
√
2
4
t < −1

1− 1
2

,−1 < −
√
2
4
t

=

{

1
2
−

√
2
4

, t > 2
√
2

1
2

, 0 < t < 2
√
2.


