TMA4195 Mathematical modeling 2011

Suggested solution exam 2011

Problem 1:

The logistic equation models population growth:

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=r N\left(1-\frac{N}{K}\right),
$$

where N is the size of the population, r the growth rate, and K the carrying capacity.
The Lotka-Volterra system models predator (y) and prey (x) populations and how they interact.

Linear stability analysis:

$$
f=\left[\begin{array}{c}
x(1-y) \\
\alpha y(-1+x)
\end{array}\right] \quad \Longrightarrow \quad D f=\left[\begin{array}{cc}
1-y & -x \\
\alpha y & \alpha(-1+x)
\end{array}\right]
$$

We observe that $D f(0,0)$ has eigenvalues $\lambda_{1}=1, \lambda_{2}=-\alpha$, so since $\max _{i=1,2} \operatorname{Re} \lambda_{i}>$ $0,(0,0)$ is an unstable equilibrium point. The matrix $D f(1,1)$ has eigenvalues $\lambda_{i}=$ $\pm \mathrm{i} \sqrt{\alpha}$, so $\max _{i=1,2} \operatorname{Re} \lambda_{i}=0$ and we get no conclusion from linear stability analysis.

Problem 2:

The dimension matrix A is

	r	ρ	U	σ	N
m	1	-3	1	0	0
s	0	0	-1	-2	0
kg	0	1	0	1	0

Since rank $A=3$, we get 5-3 = 2 dimensionless combinations. Trial and error quickly leads to

$$
\pi_{1}=N, \quad \text { and } \quad \pi_{2}=\frac{\rho}{\sigma} U^{2} r
$$

If there is a relation $\Phi(N, r, \rho, U, \sigma)=0$, Buckingham's π-theorem tells us that there is an equivalent dimensionally consistent relation $\Psi\left(\pi_{1}, \pi_{2}\right)=0$. Solving for N, we find that

$$
N=\tilde{\Psi}\left(\pi_{2}\right)=\tilde{\Psi}\left(\frac{\rho r U^{2}}{\sigma}\right),
$$

for some unknown function $\tilde{\Psi}$.

Problem 3:

a) Simply insert the perturbation expansions into the initial value problem and equate terms of equal order in ε. This leads to the following four initial value problems:

$$
\begin{aligned}
\ddot{x}_{0}=0, & x_{0}(0)=0, \dot{x}_{0}(0)=1, \\
\ddot{x}_{1}=-\dot{x}_{0} \sqrt{\dot{x}_{0}^{2}+\dot{x}_{0}^{2}}, & x_{1}(0)=\dot{x}_{1}(0)=0, \\
\ddot{z}_{0}=-1, & z_{0}(0)=0, \dot{z}_{0}(0)=1, \\
\ddot{z}_{1}=-\dot{z}_{0} \sqrt{\dot{x}_{0}^{2}+\dot{x}_{0}^{2}}, & z_{1}(0)=\dot{z}_{1}(0)=0 .
\end{aligned}
$$

We solve for x_{0} and z_{0} and get

$$
x_{0}=t, \quad z_{0}=-\frac{1}{2} t^{2}+t
$$

b) Since $\vec{v}=(\dot{\tilde{x}}, \dot{\tilde{z}})$, Newton's second law gives us

$$
m\left[\begin{array}{l}
\ddot{\tilde{x}} \\
\ddot{z}
\end{array}\right]=\vec{F}_{g}+\vec{F}_{r}=-m g\left[\begin{array}{l}
0 \\
1
\end{array}\right]-c\left[\begin{array}{c}
\dot{\tilde{x}} \\
\dot{\tilde{z}}
\end{array}\right] \sqrt{\dot{\tilde{x}}^{2}+\dot{\dot{z}}^{2}},
$$

with inital conditions $(\tilde{x}(0), \tilde{z}(0))=(0,0),(\dot{\tilde{x}}(0), \dot{\tilde{z}}(0))=\left(U_{0}, U_{0}\right)$.
We use the scaling

$$
\tilde{x}=X x, \quad \tilde{z}=Z z, \quad \tilde{t}=T t .
$$

Observe that $\max |\dot{\tilde{x}}|=\max |\dot{\tilde{z}}|=U_{0}$, so it is natural to set

$$
U_{0}=\frac{X}{T}=\frac{Z}{T} .
$$

Inserting this into the initial value problem, we get

$$
m \frac{X}{T^{2}}\left[\begin{array}{l}
\ddot{x} \\
\ddot{z}
\end{array}\right]=-m g\left[\begin{array}{l}
0 \\
1
\end{array}\right]-c \frac{X^{2}}{T^{2}}\left[\begin{array}{l}
\dot{x} \\
\dot{z}
\end{array}\right] \sqrt{\dot{x}^{2}+\dot{z}^{2}},
$$

Gravity dominates, so we balance the first and second terms, giving $X=g T^{2}=$ U_{0}^{2} / g. Inserting this, we end up with the equations from the text, with

$$
\varepsilon=\frac{c U_{0}^{2}}{m g}
$$

Problem 4:

a) The law of mass action gives us that the reaction rate $r=k \tilde{a} \tilde{b}$. Each reaction produces one molecule of substance A and removes one molecule of substance B, so

$$
\frac{\mathrm{d} \tilde{a}}{\mathrm{~d} \tilde{t}}=r=k \tilde{a} \tilde{b}, \quad \frac{\mathrm{~d} \tilde{b}}{\mathrm{~d} \tilde{t}}=-r=-k \tilde{a} \tilde{b} .
$$

Observe that

$$
\frac{\mathrm{d}}{\mathrm{~d} \tilde{t}}(\tilde{a}+\tilde{b})=0 \quad \Longrightarrow \quad \tilde{a}+\tilde{b}=a_{0}+b_{0}
$$

and hence

$$
\frac{\mathrm{d} \tilde{a}}{\mathrm{~d} \tilde{t}}=k \tilde{a}\left(a_{0}+b_{0}-\tilde{a}\right) .
$$

b) Fick's law states that the diffusive flux of a substance with concentration c is $\vec{j}_{c}=-D \nabla c$.

The conservation law for substance A in $I=[c, d]$ is then

$$
\frac{\mathrm{d}}{\mathrm{~d} \tilde{t}} \int_{I} \tilde{a} \mathrm{~d} x=-\left(j_{a}(d)-j_{a}(c)\right)+\int_{I} k \tilde{a}(M-\tilde{a}) \mathrm{d} x .
$$

We can transform the integral form to differential form by the standard procedure of setting $d=c+\Delta x$, dividing by Δx and letting Δx tend to 0 . This leads to the PDE

$$
\tilde{a}_{\tilde{t}}=D \tilde{a}_{\tilde{x} \tilde{x}}+k \tilde{a}(M-\tilde{a}) .
$$

If we choose scales $\tilde{a}=A a, \tilde{x}=X x, \tilde{t}=T t$ with

$$
A=M, \quad T=\frac{1}{M k}, \quad X=\sqrt{\frac{D}{M k}},
$$

and divide by A / T, we end up with the equation in the text.
c) If we insert $a=1+c$ into the scaled PDE and linearize around $c=0$, we get

$$
\left(c_{L}\right)_{t}=\left(c_{L}\right)_{x x}-c_{L} .
$$

Letting $\tilde{c}=\mathrm{e}^{t} c_{L}$, the equation is reduced to the heat equation

$$
\tilde{c}_{t}=\tilde{c}_{x x}
$$

which is solved by convolution with the fundamental solution c_{F} :

$$
\tilde{c}=c_{F} * \tilde{c}_{0}=\int_{-\infty}^{\infty} c_{F}(x-y, t) \tilde{c}(y, 0) \mathrm{d} y .
$$

Going back, we get

$$
c_{L}(x, t)=\mathrm{e}^{-t} \tilde{c}(x, t)=\mathrm{e}^{-t} \int_{-\infty}^{\infty} c_{F}(x-y, t) c_{L}(y, 0) \mathrm{d} y .
$$

Using the hint, we calculate

$$
\left|c_{L}\right| \leq \mathrm{e}^{-t} \int_{-\infty}^{\infty} c_{F}(x-y, t)\left|c_{L}(y, 0)\right| \mathrm{d} y \leq \mathrm{e}^{-t} \max \left|c_{L}(y, 0)\right| \cdot 1 \underset{t \rightarrow \infty}{\longrightarrow} 0 .
$$

From this, we conclude that all small perturbations of $a=1$ die out in time, and $a=1$ is an asymptotically stable equilibrium solution.

Problem 5:

The red light at $x=0, t>0$ implies that the flux $j(\rho)=0$ at $x=0, t>0$, i.e. $\rho=0$ or $\rho=1$ at $x=0, t>0$. We must choose $\rho=0$ or $\rho=1$ at $x=0$ so that the characteristics go into the domain $x<0$. Since the kinematic velocity is

$$
j^{\prime}(\rho)=1-2 \rho= \begin{cases}1, & \rho=0 \\ -1, & \rho=1\end{cases}
$$

we must choose $\rho=1$ at $x=0$. At time $t=0$, we are given $\rho=1 / 4$, so $j^{\prime}(\rho)=1 / 2>0$. Thus, the characteristics cross and we get a shock solution

$$
\rho(x, t)= \begin{cases}1, & S(t) \leq x \leq 0 \\ 1 / 4 & x \leq S(t)\end{cases}
$$

where the schock curve $S(t)$ satisfies the Rankine-Hugoniot condition

$$
\dot{S}(t)=\frac{j\left(\rho_{\text {left }}\right)-j\left(\rho_{\text {right }}\right)}{\rho_{\text {left }}-\rho_{\text {right }}}=\frac{j(1 / 4)-j(1)}{1 / 4-1}=-1 / 4, \quad S(0)=0,
$$

so $S(t)=-t / 4$.

