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Exam in TMA4195 Mathematical Modeling 21.12.2013
Solutions

Problem 1 The dimensional matrix A is

L g ρ σ V
kg 0 0 1 1 0
m 1 1 −3 0 1
s 0 −2 0 −2 −1

Since the first 3 collumns are linearly independent, we see that the rank of A is 3 and that
we may take L, g, ρ as core variables (they are dimensionally independent). Hence by the first
part of Buckingham’s Pi Theorem, there are exactly 5 − 3 = 2 dimensionally independent
combinations. The standard choice is now the following:

π1 = σ

L•g•ρ•
and π2 = V

L•g•ρ•
.

It is then easy to see that

π1 = σ

ρgL2 and π2 = V√
gL
.

The second part of Buckingham’s Pi Theorem states that any physical relation

Φ(L, g, ρ, σ, V ) = 0

is equivalent to a relation between the associated dimensionless combinations

Ψ(π1, π2) = 0.

Hence the most general form a physical relation between L, g, ρ, σ, V may take is

Ψ( V√
gL
,
ρgL2

σ
) = 0
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for an arbitrary function Ψ, or if you write V as a function of the other variables,

V =
√
gLΨ̃(ρgL

2

σ
)

for an arbitrary function Ψ̃.

Note: Other (equivalent!) relations can be given using other choices of dimensionless combi-
nations.

Problem 2 The unscaled logistic equation is given by

dN
dt = rN(1− N

K
),

where N is the population size, r is the growth rate, and K is the carrying capacity.

Possible two-species models are e.g. the predator-prey model (Lotka–Volterra),

dN1

dt = r1N1(1− αN2),
dN2

dt = r2N2(−1 + βN1),

where N1 is the prey population and N2 the predator population (Lotka–Volterra), and the
competition model (Gause)

dN1

dt = r1N1(1− αN2),
dN2

dt = r2N2(1− βN1),

where N1 and N2 are the competing populations (Gause). There are many other possibilities.

Problem 3

a) The perturbation assumption is that

x = x0 + εx1 +O(ε2). (1)

From the initial value problem we then get

ẍ0 + εẋ1 +O(ε2) + ε(1 + x2
0 + ẋ2

0 +O(ε2))(ẋ0 +O(ε)) + x0 + εx1 +O(ε2) = 0, t > 0,
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and
x0(0) + εx1(0) + . . . = 1 and ẋ0(0) + εẋ1(0) + . . . = 0.

Since this should hold for all ε, it follows that

O(1) : ẍ0 + x0 = 0, x0(0) = 1, ẋ0(0) = 0,

O(ε) : ẍ1 + (1 + x2
0 + ẋ2

0)ẋ0 + x1 = 0, x1(0) = 0, ẋ1(0) = 0.

We solve for x0 and obtain x0(t) = cos t. It follows that (1 + x2
0 + ẋ2

0)ẋ0 = −2 sin t and
hence the problem for x1 is the reduced to

ẍ1 + x1 = 2 sin t, x1(0) = 0, ẋ1(0) = 0.

This is a linear inhomogeneous equation whose general solution can be written as

x1 = xhom + xpart,

where xhom is the general solution of the homogeneous equation ẍ1 + x1 = 0 and xpart is
any particular solution of ẍ1 + x1 = −2 sin t. As for x0, we find that

xhom = C1 cos t+ C2 sin t.

To find xpart, we use the method of undetermined coefficients and the hint:

xpart = At cos t+Bt sin t.

A small computation shows that

ẍpart + xpart = 2(−A sin t+B cos t) = 2 sin t

if and only if A = −1 and B = 0. Taking into account the intitial conditions x1(0) =
0 = ẋ1(0), we find that C1 = 0 and C2 = 1 respectively, and hence that

x1 = sin t− t cos t.

The O(ε2) accurate approximate solution is then

xε(t) = x0(t) + εx1(t) = cos t+ ε(sin t− t cos t).

b) First note that the boundary (initial) layer is close to t = 0.
The outer equations: Find an approximate solution (x0, y0) by setting ε = 0 in the
original system,

ẋ0 = y0,

0 = −(1 + x2
0 + y2

0)y0 − x0.
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To find the inner equation, we must rescale and find the boundary (intial) layer thickness
which is the other consistent time scale in the problem: (x, y, t) = (X, Y, δτ) and

1
δ
Ẋ = Y,

ε

δ
Ẏ = −(1 +X2 + Y 2)Y −X.

Under the scaling assumption (scaled terms are O(1)), balancing in the first equation
gives the outer scale δ = 1 while balancing in the second equation gives the inne scale
(boundary layer thickness) δ = ε. Let δ = ε, and find approximate solutions (X0, Y0) by
multiplying the first equation by ε and setting ε = 0:

Ẋ0 = 0,
Ẏ0 = −(1 +X2

0 + Y 2
0 )Y0 −X0,

(Note that the initial conditions belong to the boundary layer and inner equation, while
a maching condition is needed for the outer problem).

Problem 4

a) Here the flux function j(ρ) = ρ(1 −√ρ), and since j(ρ) = v(ρ)ρ, it follows that v(ρ) =
1−√ρ. The scaled conservation law in differential form is

ρt + (j(ρ))x = 0. (2)

We look at the characteristics emerging from the points a and b. The characteristic
equations (z(t) = ρ(x(t), t)) are

ẋ = c(z) = j′(z), x(0) = x0

ż = 0, z(0) = ρ(x(0), 0) = ρ0(x0),

with x-solution
x(t) = x(t;x0) = x0 + c(ρ0(x0))t.

Since c(ρ) = j′(ρ) = 1 − 3
2ρ

1
2 and ρ(a, 0) < ρ(b, 0), it follows that c(ρ0(a)) > c(ρ0(b)).

Hence the characterisitcs to the left (x(t; a)) will overtake and collide with the charac-
teristic to the right (x(t; b)) in finite time and the solution will develope a shock.

b) The initial value is

ρ(x, 0) =

1 = ρ−, x < 0,
0 = ρ+, x > 0,
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and the method of characteristics gives the speed c = −1
2 for characteristics starting at

x0 < 0, and c = 1 for characteristics starting at x0 > 0. This means that the method
of characteristics can not tell us what happens in the sector −1

2t < x < t, and we have
a rarefaction wave. To find the form of the rarefaction wave solution, we assume that
ρ(x, t) = φ(x

t
) and insert it into the conservation law. Then

− x
t2
φ′ + 1

t
φ′j′(φ) = 0.

Divide by φ′ and use that j′(φ) = 1− 3
2φ

1
2 to get that ρ(x, t) = 4

9(1− x
t
)2.

The total solution is then

ρ(x, t) =


1, x < −1

2t,
4
9(1− x

t
)2, −1

2t < x < t,

0, t < x,

where the solution outside the sector was found by the method of characteristics.

Problem 5

a) Fick’s law: The diffusive flux is proportional to the gradient of the consentration,

j∗d = −D∂c∗

∂x∗
,

where D is the diffusion coefficient. The conservation in the interbal I can be stated as

Change in no of molcules in I per time = Flux in− Flux out + Production,

or
d
dt

∫ x2

x1
c∗(x, t∗) dx = j∗(x1, t

∗)− j∗(x2, t
∗) +

∫ x2

x1
q∗(x, t∗) dx∗

If c∗ is smooth, then d
dt

∫ x2
x1
c∗(x, t∗) dx =

∫ x2
x1

∂
∂t∗
c∗(x, t∗) dx. Let x1 = x0 be any point in

R and x2 = x0 + ∆x for ∆x > 0 small, then
1

∆x

∫ x0+∆x

x0

∂

∂t∗
c∗(x, t∗) dx = −j

∗(x0 + ∆x, t∗)− j∗(x0, t
∗)

∆x + 1
∆x

∫ x0+∆x

x0
q∗(x, t∗) dx∗.

Since ∆x is small, ∂
∂t∗
c∗(x, t∗) ≈ ∂

∂t∗
c∗(x0, t

∗), c∗(x, t∗) ≈ c∗(x0, t
∗), and q(x, t∗) ≈ q(x0, t

∗)
for x ∈ (x, x∆x). Hence, sending ∆x→ 0, we find that

∂c∗

∂t∗
= −∂j

∗

∂x∗
+ q∗

at (x0, t
∗). Since this point is arbitrary, the equation holds in R × (0,∞). Inserting for

j∗ and q∗ then gives equation (3) in the problem set.
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b) We introduce the scales c∗ = Cc, t∗ = Tt, x∗ = Xx. Then

C

T
ct = DC

X2 cxx − rC
3c(c− a

C
)(c− b

C
).

If we take C = b and divide by C
T
we get

ct = TD

X2 cxx − Trb
2c(c− a

b
)(c− 1).

Equation (4) in the problem set now follows from first taking T such that Trb2 = 1 and
then X such that TD

X2 = 1. Note that then k = a
b
< 1.

c) We linearize the equation around c = 0. It is more transparent to write the equation as

ct = cxx + q(c).

The only term we need to linearize is q, since the other terms are already linear:

q(c) ≈ q(0) + q′(0)c = 0− kc,

and hence the linearized equation is

ct = cxx − kc.

We can solve the linearized equation in many ways, e.g. we can transform it to the heat
equation using an integrating factor. Let v = ektc and note that

∂

∂t
v = ekt(ct + kc) = ektcxx = vxx.

Hence v can be given in terms of the fundamental solution cF , v = cF (·, t) ∗ u0, and

c(x, t) = e−ktv = e−kt
∫ +∞

−∞
u0(y) 1√

4πt
e−

(x−y)2
4t dy.

d) The equilibrium points of (4) are its constant solutions, and if c = ce is a constant
solution of (4), then (ce)t = (ce)xx = 0 and

q(ce) = −ce(ce − k)(ce − 1) = 0.

The solutions/equilibrium points are ce = 0, ce = k, and ce = 1.
To study the stability of the equilibrium points ce, we check whether solutions of the
equation linearized arond ce that start near ce remain near for all times. To do that, let

c(x, t) = ce + c̃(x, t)



TMA4195 Mathematical Modeling, 21.12.2013, solutions Page 7 of 7

and note that if c̃ is not so big, then

c̃t = c̃xx + q(ce + c̃) ≈ c̃xx + q(ce) + q′(ce)c̃.

Note that q(ce) = 0 and let ĉ be the solution of the linearized equation

ct = cxx + q′(ce)c. (5)

This linearized equation only has the equilibrium point ĉ = 0 (since q′ 6= 0). By definition
we say that ce is a stable (unstable) equilibrium point of the original non-linear equation
according to linear stability analysis if ĉ = 0 is a stable (unstable) equilibrium point of
the linearized equation (5).
We solve equation (5) and c(x, 0) = c0(x) as in part c), this time with using the integrating
factor e−q′(ce)t:

ĉ(x, t) = eq
′(ce)t

∫
R
c0(x− y)cF (y, t)dy.

Note that if |c0 − 0| = |c0| < δ, then

|ĉ(x, t)− 0| = |ĉ(x, t)| ≤ eq
′(ce)t

∫
R
|c0(x− y)cF (y, t)|dy < δeq

′(ce)t,

since by the hint,
∫
R |cF | =

∫
R cF = 1. Hence it follows that ĉ = 0 is a stable equilibrium

point if q′(ce) ≤ 0 since then small perturbations remain small for all times. On the
other hand, if q′(ce) > 0, then ĉ = 0 is not stable any more since we can find small
perturbations that blows up in time. Take e.g. c0 = δ and check that

ĉ(x, t) = δe−q
′(ce)t →∞ as t→∞.

We compute q′ and find that q′(0) = −k < 0, q′(1) = −(1−k) < 0, and q′(k) = k(1−k) >
0 since 0 < k < 1. From the discussion above we can then conclude according to linear
stability analysis that ce = 0 and ce = 1 are stable while ce = k is unstable.


