Norwegian University of Science and Technology Page 1 of 7
Department of Mathematical Sciences

Exam in TMA4195 Mathematical Modeling 21.12.2013
Solutions

Problem 1 The dimensional matrix A is
‘ L g p o V
kg | O 0 1 1 0
m| 1 1 -3 0 1
s |0 =2 0 -2 -1

Since the first 3 collumns are linearly independent, we see that the rank of A is 3 and that
we may take L, g, p as core variables (they are dimensionally independent). Hence by the first
part of Buckingham’s Pi Theorem, there are exactly 5 — 3 = 2 dimensionally independent
combinations. The standard choice is now the following:

o d \%
T = an o = .
Logopo Logopo
It is then easy to see that
o d %
T = an Ty — —F—.
pgL? VgL

The second part of Buckingham’s Pi Theorem states that any physical relation
®(L,g,p,0,V)=0
is equivalent to a relation between the associated dimensionless combinations
U(my,m) = 0.
Hence the most general form a physical relation between L, g, p, o,V may take is

V. pgL?
VgL o

( )=0
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for an arbitrary function W, or if you write V' as a function of the other variables,

V = /gLY(

ngQ)
o
for an arbitrary function .

Note: Other (equivalent!) relations can be given using other choices of dimensionless combi-
nations.

Problem 2 The unscaled logistic equation is given by
dN N
= pN(1 =2

where N is the population size, r is the growth rate, and K is the carrying capacity.

Possible two-species models are e.g. the predator-prey model (Lotka—Volterra),

dN

ditl = TlNl(l — OéNQ),
dN.

ditz = roNo(—1+4 SNy),

where N is the prey population and N, the predator population (Lotka—Volterra), and the
competition model (Gause)

dN
ditl = TlNl(]. — OéNg),
dN.
d7752 = 7“2N2(1 - BNl)a

where N; and N; are the competing populations (Gause). There are many other possibilities.

Problem 3
a) The perturbation assumption is that
T =20+ exy + O(%). (1)
From the initial value problem we then get

do + eiy + O(€%) + e(1 + 23 + 25 + O(e)) (g + O(€)) + 70 + €x1 + O(*) =0, t >0,
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b)

and
zo(0) + ex1(0) + ... =1 and  #9(0) + €z1(0) +...=0.

Since this should hold for all ¢, it follows that

O(l) . i’() + X = O, [L’()(O) = 1, $0(O) = O,
O(e): &1+ (1 + a5+ i3)io+ 21 =0, 71(0) =0, #1(0) = 0.
We solve for 2y and obtain x(t) = cost. It follows that (1 + 22 + @2)ig = —2sint and

hence the problem for z; is the reduced to
¥ + x = 2sint, z1(0) =0, ,(0) = 0.
This is a linear inhomogeneous equation whose general solution can be written as
T1 = Thom + Tpart,

where 0, is the general solution of the homogeneous equation &1 + x1 = 0 and g, is
any particular solution of #; + x; = —2sint. As for x(, we find that

Thom = Cpcost + Cysint.
To find 7,4, we use the method of undetermined coefficients and the hint:
Tpart = At cost + Btsint.
A small computation shows that
Tpart + Tpart = 2(—Asint + Bcost) = 2sint

if and only if A = —1 and B = 0. Taking into account the intitial conditions z1(0) =
0 = ,(0), we find that C} = 0 and Cy = 1 respectively, and hence that

r, =sint — tcost.
The O(e?) accurate approximate solution is then
z(t) = zo(t) + ex1(t) = cost + e(sint — t cost).

First note that the boundary (initial) layer is close to t = 0.
The outer equations: Find an approximate solution (xg,%o) by setting ¢ = 0 in the
original system,
:'EO = Yo,
0= —(1+25+ Y)Y — To-
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To find the inner equation, we must rescale and find the boundary (intial) layer thickness
which is the other consistent time scale in the problem: (z,y,t) = (X,Y,d7) and

X =Y,

5Y:-Q+Xﬂ4ﬂy—x.
Under the scaling assumption (scaled terms are O(1)), balancing in the first equation
gives the outer scale 6 = 1 while balancing in the second equation gives the inne scale

(boundary layer thickness) 6 = e. Let § = ¢, and find approximate solutions (X, Yy) by
multiplying the first equation by € and setting ¢ = 0:

X(]:O,
Yo = —(14 X5 +Y5)Yo — Xo,

(Note that the initial conditions belong to the boundary layer and inner equation, while
a maching condition is needed for the outer problem).

Problem 4

a) Here the flux function j(p) = p(1 — /p), and since j(p) = v(p)p, it follows that v(p) =
1 —/p. The scaled conservation law in differential form is

pe+ (7 (p))e = 0. (2)

We look at the characteristics emerging from the points ¢ and b. The characteristic
equations (z(t) = p(z(t),t)) are

&= c(z) = j'(2), z(0) = zo
=0, 2(0) = p(2(0),0) = po(o),
with z-solution
x(t) = z(t; o) = o + c(po(20))t.

Since c(p) = j'(p) = 1 — %p% and p(a,0) < p(b,0), it follows that c¢(po(a)) > c(po(b)).
Hence the characterisites to the left (x(¢;a)) will overtake and collide with the charac-
teristic to the right (z(¢;0)) in finite time and the solution will develope a shock.

b) The initial value is

1=p7,2 <0,
z,0) =
pl,0) {02,0*,90>07
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and the method of characteristics gives the speed ¢ = —% for characteristics starting at
xo < 0, and ¢ = 1 for characteristics starting at xy > 0. This means that the method
of characteristics can not tell us what happens in the sector —%t < z < t, and we have
a rarefaction wave. To find the form of the rarefaction wave solution, we assume that
p(x,t) = ¢(%) and insert it into the conservation law. Then

T 1 .
—tjﬁb/ + ?ﬁ/]l(ﬁﬁ) =0.
Divide by ¢’ and use that j'(¢) =1 — %qﬁ to get that p(x,t) = 3(1 _ %)2
The total solution is then
, T < —%t,

(1-%)2 —Jt<z<t,
, t <,

p($’t> =

O ok =

where the solution outside the sector was found by the method of characteristics.

Problem 5

a) Fick’s law: The diffusive flux is proportional to the gradient of the consentration,

o
ox*’

where D is the diffusion coefficient. The conservation in the interbal I can be stated as

ji=-D

Change in no of molcules in I per time = Flux in — Flux out + Production,

or
d 2 * * % * -k * 2 * * *
=) o= e ) = e )+ [ q ) de
dt 1 1
If ¢* is smooth, then & [72 ¢*(z,¢*) dz = [ 8‘?* c*(z,t*) dz. Let 1 = xg be any point in

R and z9 = 29 + Az for Az > 0 small, then
1 feo+dz 9 & Az, t*) — j* (o, t*) 1 [rothe
/ 0 C*(J/’7t*> dr = _j (1’0 + x, ) J (x07 ) + / 0

q*(z, t*) dz*.

E ) 6t* Az E o
Since Az is small, 22=c*(z, t*) & 2%c* (20, %), ¢*(x,t*) & ¢*(x0,t*), and q(z, t*) ~ q(z0, t*)
for z € (x,zAx). Hence, sending Az — 0, we find that
dct 0y” e
ot oz 1

at (zo,t*). Since this point is arbitrary, the equation holds in R x (0, 00). Inserting for
j* and ¢* then gives equation (3) in the problem set.
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b)

We introduce the scales ¢* = Cc,t* = T't,2* = Xx. Then
C DC

_ 3
Tt = g Can rCc(c — =)(c— =).
If we take C' = b and divide by % we get

TD
-

Gy

. — Trb*c(c — %)(c —1).

Equation (4) in the problem set now follows from first taking 7" such that Trb* = 1 and
then X such that 7;(—12) = 1. Note that then k = 7 < 1.

We linearize the equation around ¢ = 0. It is more transparent to write the equation as
¢t = Cor + q(c).
The only term we need to linearize is ¢, since the other terms are already linear:
q(c) = ¢(0) + ¢'(0)c = 0 — ke,
and hence the linearized equation is

Ct = Cyp — ke.

We can solve the linearized equation in many ways, e.g. we can transform it to the heat
equation using an integrating factor. Let v = e**c and note that

—v = (e, + ke) = eFlegy = vgy.

ot

Hence v can be given in terms of the fundamental solution cg, v = cp(+,t) * ug, and

+00 1 z—y)>2
clx,t) = e My = e_kt/ uo(y) et dy.

—00 vV 47t

The equilibrium points of (4) are its constant solutions, and if ¢ = ¢, is a constant
solution of (4), then (c.); = (¢e)ze = 0 and

q(ce) = —ce(ce — k)(ce — 1) = 0.

The solutions/equilibrium points are ¢, = 0, ¢, = k, and ¢, = 1.

To study the stability of the equilibrium points ¢., we check whether solutions of the
equation linearized arond c, that start near ¢, remain near for all times. To do that, let

c(x,t) = c. + ¢z, t)
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and note that if ¢ is not so big, then
G = Cow + q(Co + E) & Cpp + qlce) + ¢'(co)é.
Note that g(c.) = 0 and let ¢ be the solution of the linearized equation
¢t = Con + ¢ (co)e. (5)

This linearized equation only has the equilibrium point ¢ = 0 (since ¢’ # 0). By definition
we say that ¢, is a stable (unstable) equilibrium point of the original non-linear equation
according to linear stability analysis if ¢ = 0 is a stable (unstable) equilibrium point of
the linearized equation (5).

We solve equation (5) and ¢(x,0) = ¢o(x) as in part ¢), this time with using the integrating
factor e~ 7 (ce)t;
ol 1) = ¢/ [ cola — yer(y. )y
i

Note that if [cg — 0] = |cp| < §, then
e(ar.t) = 0] = Ja(e )] < &7 [ Jeo(wr —y)er(y. D]dy < 5,

since by the hint, [; |cr| = [z cr = 1. Hence it follows that ¢ = 0 is a stable equilibrium
point if ¢'(c.) < 0 since then small perturbations remain small for all times. On the
other hand, if ¢'(c.) > 0, then ¢ = 0 is not stable any more since we can find small
perturbations that blows up in time. Take e.g. ¢y = ¢ and check that

ez, t) =077 00 as t— oo

We compute ¢’ and find that ¢'(0) = —k < 0, ¢'(1) = —(1—k) < 0,and ¢'(k) = k(1—k) >
0 since 0 < k& < 1. From the discussion above we can then conclude according to linear
stability analysis that ¢, = 0 and ¢, = 1 are stable while ¢, = k is unstable.



