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Exam in TMA4195 Mathematical Modeling 11.12.2014
Solutions

Problem 1

The dimensional matrix A is
L u0 A m α g ρ

m 1 1 2 0 0 1 −3
s 0 −1 0 0 0 −2 0

kg 0 0 0 1 0 0 1

.

It can easily be checked that A has rank 3, and so by Buckingham’s Pi Theorem, there are
exactly 7− 3 = 4 dimensionally independent combinations. Since we want L as a function of
the other variables, we exclude it as a core variable; for simplicity, we choose the core variables
as u0, A and m. The dimensionless combinations are thus as follows:

π1 = L√
A
, π2 = α, π3 = g

√
A

u2
0

and π4 = ρA
3
2

m
.

Furthermore, Buckingham’s Pi Theorem states that any physical relation
G(L, u0, A,m, α, g, ρ) = 0

is equivalent to a relation between the associated dimensionless combinations:
Ψ(π1, π2, π3, π4) = 0.

Assuming that this equation allows us to solve with respect to π1, we find
π1 = Φ(π2, π3, π4)

⇒ L =
√
AΦ

α, g√A
u2

0
,
ρA

3
2

m

 .
In other words, we know that there exists a function Φ such that

F (u0, A,m, α, g, ρ) =
√
AΦ

α, g√A
u2

0
,
ρA

3
2

m

 .
Note: Other (equivalent!) relations can be given using other choices of dimensionless combi-
nations.
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Problem 2

We start by calculating the outer solution yO. We set ε = 0 and obtain the equation

y′O + y2
O = 0, yO(1) = −1

2 ,

where we have used the hint that the boundary layer is located near x = 0, meaning that
the outer equation must satisfy the boundary condition at x = 1. We solve this by assuming
yO 6= 0 and dividing by y2

O to find

y′O
y2
O

= −1

d
dx

(
− 1
yO

)
= −1

⇒ 1
yO

= x+ C

⇒ yO = 1
x+ C

.

Imposing the boundary condition, we obtain the outer solution:

yO = 1
x− 3 .

To find the inner solution, we must first obtain a consistent scaling in the boundary layer. We
scale the x axis by x = δξ and obtain the rescaled equation, with Y = Y (ξ)

ε

δ2Y
′′ + 1

δ
Y ′ + Y 2 = 0

Assuming Y, Y ′, Y ′′ ∼ 1 in this area, we use the method of dominant balance to determine the
scaling of δ. There are three choices: δ = ε, δ =

√
ε and δ = 1. Choosing δ = 1 yields the

original equation, which is uninteresting. Choosing δ =
√
ε causes the second term to become

dominant, and is an inconsistent approximation. However, choosing δ = ε, we get the equation

Y ′′ + Y ′ + εY 2 = 0,

which is consistent and allows us to disregard the Y 2 term. We thereby get the inner equation

Y ′′I + Y ′I = 0, YI(0) = 0,

with general solution

YI(ξ) = A+Be−ξ
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and, with the boundary condition imposed,
YI(ξ) = A(1− e−ξ)

Next, using the matching condition, we get

A = lim
ξ→∞

YI(ξ) = lim
x→0

yO(x) = −1
3

Finally, combining the inner and outer solution and subtracting the matching constant, we get
the uniform solution

yU(x) = yO(x) + YI

(
x

ε

)
− lim

ξ→∞
YI(ξ)

⇒ yU(x) = 1
x− 3 + 1

3e−xε .

Problem 3

We find the equilibrium points as the solutions of
f(y) = y′ = y(y −

√
µ− 1)(y +

√
µ− 1)(y − µ) = 0,

i.e. the equilibrium points are y ∈ {0,
√
µ− 1,−

√
µ− 1, µ}. Note that the equilibrium points

y =
√
µ− 1 and y = −

√
µ− 1 are real only for µ ≥ 1.

To investigate their stability property with respect to µ, we look at the sign of f ′(y) at each
equilibrium point as µ changes. A negative sign implies stability, while a positive sign implies
instability. Firstly, we have that

f ′(y) = (y −
√
µ− 1)(y +

√
µ− 1)(y − µ) + y(y +

√
µ− 1)(y − µ)

...+ y(y −
√
µ− 1)(y − µ) + y(y −

√
µ− 1)(y +

√
µ− 1).

We now observe that

f ′(0) = (µ− 1)µ


> 0, µ > 1
< 0, 0 < µ < 1
> 0, µ < 0

f ′(µ) = µ(µ2 − µ+ 1)

> 0, µ > 0
< 0, µ < 0

f ′(±
√
µ− 1) = 2(µ− 1)(

√
µ− 1− µ) < 0, µ > 1

From this, we get the bifurcation diagram shown in figure 1. The bifurcation points are (0,0)
and (0,1), and we can see that the equilibrium solutions change stability when passing through
these points.
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Figure 1: Bifurcation diagram.

Problem 4

We rewrite the equation in standard form:

ρt + ρ2ρx = 0, x ∈ R, t > 0

and solve it by the method of characteristics. Introducing z(t) = ρ(x(t), t), we see that

ż = ρt + ẋρx,

and choosing ẋ = z2 yields the system of ODES:

ẋ = z2, x(0) = x0

ż = 0, z(0) = ρ(x(0), 0) = ρ(x0, 0),

with solutions:

x(t) = ρ(x0, 0)2t+ x0

z(t) = ρ(x0, 0).

Using the initial conditions, we get two families of characteristics:

x(t) =

4t+ x0, x0 < 0
t+ x0, x0 > 0.



TMA4195 Mathematical Modeling, 11.12.2014, solutions Page 5 of 8

Since the cinematic velocity c(ρ) = ρ2 is greater for characteristics starting at x0 < 0 than for
those starting at x0 > 0, the solution will develop a shock, starting at x = 0 at t = 0. The
speed of this shock is determined by the Rankine-Hugoniot condition:

Ṡ(t) = j(ρ+)− j(ρ−)
ρ+ − ρ−

=
1
3(ρ+)3 − 1

3(ρ−)3

ρ+ − ρ−
=

1
323 − 1

313

2− 1 = 7
3

⇒ S(t) = 7
3t

The characteristics and the shock are shown in figure 2.
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Figure 2: Characteristics and shock.

We may summarize the solution as:

ρ(x, t) =

2, x < 7
3t

1, x > 7
3t.

Problem 5

Interpretation of reactions:

• When an infected and a susceptible person interacts, there is a chance of the susceptible
person getting infected.
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• Infected people have a chance of recovering.

• Infected people have a chance of dying.

Consumption, production and reaction rates:

• In the first reaction, one S is consumed and one I is produced. Reaction rate: ra = aSI.

• In the second reaction, one I is consumed and one R is produced. Reaction rate: rb = bI.

• In the third reaction, one I is consumed and one D is produced. Reaction rate: rc = cI.

Disregarding births and deaths due to other circumstances, the total amount of people (S +
I+R+D) must be constant. We can then set up the system of ODEs governing the evolution
of the populations:

Ṡ = −ra = −aSI
İ = ra − rb − rc = aSI − bI − dI
Ṙ = rb = bI

Ḋ = rc = dI

Problem 6

a) The total mass of water in R is equal to the density times the available volume:

total mass = ρφ
∫
R

dx∗dz∗

=
∫
R

ρφdx∗dz∗.

The general conservation law states that

change of mass in R
time = −flux out of R + production in R,

or:
d

dt∗
∫
R

ρφdx∗dz∗ = −
∫
∂R

j · ndσ +
∫
R

q(x∗, t∗)dx∗dz∗.
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We may now note that there is no production in the domain, i.e. q(x∗, t∗) ≡ 0, and use
Darcy’s law to express j, yielding

d
dt∗

∫
R

ρφdx∗dz∗ =
∫
∂R

K

µ
∇(p∗ + ρgz∗) · ndσ.

Since φ, ρ and R are constant, we see that

d
dt∗

∫
R

ρφdx∗dz∗ = 0.

Furthermore, we can apply the divergence theorem,∫
∂R

j · ndσ =
∫
R

∇ · jdx∗dz∗,

to obtain the equation

0 = K

µ

∫
R

∇ · ∇(p∗ + ρgz∗)dx∗dz∗ = K

µ

∫
R

∇2p∗dx∗dz∗. (1)

We now fix an arbitrary point (x0, z0) ∈ Ω∗(t∗) and choose

R = Rr = {(x∗, z∗) : |x∗ − x0| <
r

2 , |z
∗ − z0| <

r

2},

and note that in Rr, since ∇2p∗ is continuous, we have

∇2p∗(x∗, z∗) = ∇2p∗(x0, z0) + o(1) as r → 0.

Hence, inserting this into equation (1), we get

0 = 1∫
R

dx∗dz∗ [∇
2p∗(x0, z0) + o(1)]

∫
R

dx∗dz∗ = ∇2p∗(x0, z0) + o(1),

and finally, letting r → 0 and emphasizing that (x0, z0) was chosen arbitrarily, we get

∇2p∗ = ∂2p∗

∂x∗2
+ ∂2p∗

∂z∗2
= 0 in Ω∗(t∗)

Note: Another way of arriving at the same conclusion is to observe that since the control
volume R was chosen arbitrarily, and since p∗ is assumed smooth, equation (1) can only
hold if the integrand is zero everywhere in Ω∗(t∗)
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b) Natural scalings for x∗, z∗ and h∗ are L,H and H, respectively. Inserting the scaled
variables x∗ = Lx, z∗ = Hz, h∗ = Hh, p∗ = ρgHp, and t∗ = Tt into the equation, we get

µφH

KT
ht −

ρgH2

L2 hxpx = −ρgpz − ρg

⇒ µφH

ρgKT
ht −

H2

L2 hxpx = −(pz + 1).

Since h, p ∈ (0, 1), the right hand side is ∼ 1, and the second term on the left hand side
is negligible. We therefore wish to choose T such that

µφH

ρgKT
= 1 ⇒ T = µφH

ρgK
.

c) We follow the hint and reduce the problem to one space dimension by introducing the
new variables:

ϕ(x∗, t∗) = ρφh∗(x∗, t∗) = mass of water at (x,t)
length

Q(x∗, t∗) =
h∗(x∗,t∗)∫

0

j(x∗, t∗, z) · exdz = volume flow rate through x∗ at time t∗
time .

Using Darcy’s law and the assumption of hydrostatic pressure, we have

j(x∗, t∗, z) · ex = −K
µ
p∗x∗(x∗, t∗, z) = −K

µ
h∗x∗(x∗, t∗)

⇒ Q(x∗, t∗) = −(h∗h∗x∗)(x∗, t∗)

We now let x∗ ∈ (0, L) and t∗ > 0 and set up the conservation law for water in the
interval (x∗, x∗ + ∆x∗):

d
dt∗

x∗+∆x∗∫
x∗

ϕ(x, t∗)dx = Q(x∗, t)−Q(x∗ + ∆x∗, t). (2)

Now, since ϕ is smooth, we have that:

d
dt∗

x∗+∆x∗∫
x∗

ϕ(x, t∗)dx =
x∗+∆x∗∫
x∗

ϕt∗(x, t∗)dx = ∆x∗(ϕt∗(x∗, t∗) + o(1))

as ∆x∗ → 0. Inserting this into (2), dividing by ∆x∗ and letting ∆x∗ → 0, we get

ϕt∗ = −Qx∗(x∗, t∗)

⇒ h∗t∗ = K

ρgµ

∂

∂x∗
(h∗h∗x∗) x∗ ∈ (0, L), t∗ > 0.


