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Problem 1 Use the Buckingham’s Pi theorem to show that the period of a
pendulum must be independent of its mass.

Solution We can assume that the physical quantities involved are:

• the velocity v;

• the length of the pendulum `;

• the mass of the bob M ;

• acceleration of gravity g.

We have a physical relation

T = T (v, `,M, g).

The physical quantities involved give a dimension matrix

v ` M g T

kg 0 0 1 0 0
m 1 1 0 1 0
s −1 0 0 −2 1

We see that the dimension matrix has rank r = 3 (because for example the second,
third and fifth columns are clearly linearly independent). There are n = 5 physical
quantities and by the Buckingham’s Pi theorem there are n − r = 2 independent
dimensionless combinations in the equation of this model. We can take these to
be

π1 = g
T 2

`
, π2 = v

T

`
.

We notice that M cannot be used do make dimensionless combinations because
the unit kg does not appear in any of the other involved physical quantities. By
the Buckingham’s Pi theorem

T = T (v, `,M, g)⇔ φ(π1, π2) = 0.

So for example

π1 = ϕ(π2)⇔ g
T 2

`
= ϕ

(
v
T

`

)
,⇔ T =

√
`

g

√
ϕ
(
v
T

`

)
,
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and the obtained relation for T is independent on M .

If for simplicity we assume
√
ϕ
(
v T
`

)
= C then

T = C

√
`

g

and we observe that with C = 2π, this is the period of a pendulum for small
oscillations whose equation is θ̈ = −g

`
θ, and solution θ(t) = θ0 cos(

√
g
`
t).

Problem 2 The equation

m
d2y∗

dt∗2
+ b

dy∗

dt∗
+ ky∗ = 0

models a mechanical system consisting of a spring with damping, wherem, b, k > 0.
Explain which possible scales we have for t∗ in this model. Provide a suitable
scaling of the equation for the case when the two first terms dominate.

Solution: We scale y∗ and t∗ by:

y∗ = Y y, t∗ = Tt.

We get the scaled equation

mY

T 2
d2y

dt2
+ bY

T

dy

dt
+ kY y = 0.

The possible scales correspond to the following three situations

i) the first two terms balance and dominate:

mY

T 2 = bY

T
⇒ T = m

b
;

this is valid for k
m
m2

b
= km

b
<< 1.

ii) the first and last term balance and they dominate:

mY

T 2 = kY ⇒ T =
√
m

k
;

this is valid for bT
m

= b

m
√

m
k

= b√
m

1
k
<< 1.
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iii) the last two terms balance and dominate

bY

T
= kY ⇒ T = b

k
,

valid when m ≈ b ≈ k ≈ 1.

We get three different scales for T for the three different situations.

If the first and the second term balance and they dominate over the third term
then

mY

T 2 = bY

T
⇒ T = m

b
,

and
bY

T
≥ kY ⇒ b2

m
Y ≥ kY,

with km
b2 small. So if the first two terms dominate, we divide the equations by b2

m

and get
d2y

dt2
+ dy

dt
+ εy = 0,

where ε = km
b2 .

Problem 3 In the scaled fluid dynamics model of car traffic along a one-way
one-lane road the density of cars ρ satisfies the equation

ρt + (1− 2ρ)ρx = 0

in any x-interval where no cars can enter or leave the road. Define the car flux and
speed for this model. At x = 0 there is a traffic light, sketch the characteristics
and the solution ρ(x, t) for t > 0 in the following situation.

The initial condition is
ρ(x, 0) =

{
1 x < 0,
0 x ≥ 0.

Which kind of car traffic situation could be modelled with this initial density?
Solution: The flux is j(ρ) = ρ v = ρ(1 − ρ) and the speed is v = (1 − ρ). The
characteristics are the solutions of

ẋ = 1− 2z, x(0) = x0

ż = 0, z(0) = ρ0(x0)
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and so
z(t) = ρ0(x0) =

{
1 x0 < 0,
0 x0 ≥ 0,

x = x0 + t

{
−1 x0 < 0,
1 x0 ≥ 0.

The characteristics are straight lines parallel to x = −t in the left half plane and
parallel to x = t on the right half plane. There is a dead sector (between x = −t
and x = t) and a rarefaction wave arises. The solution is

ρ(x, t) =


1 x < −t,

ϕ(x
t
) −t < x < t

0 x ≥ t.

where ϕ(x
t
) must satisfy ρt + (j(ρ))x = 0 with j(ρ) = ρ(1 − ρ). So inserting

ρ = ϕ(x
t
) into this equation and differentiating one obtains

j′
(
ϕ
(
x

t

))
= x

t

and
1− 2ϕ

(
x

t

)
= x

t

leading to
ϕ
(
x

t

)
= 1

2 −
x

2t .

So

ρ(x, t) =


1 x < −t,

1
2 −

x
2t −t < x < t

0 x ≥ t.

The car traffic situation described is “red to green light at x = 0 and t = 0”.

Problem 4 This exercise is about the kinetic theory of flood waves in rivers.
The starting point is the shallow water equations

ht + (vh)x = 0, (1)

(vh)t + (v2h+ 1
2gh

2)x = gh sinα− Cfv2. (2)

We model the flow of water in a river flowing downhill with a inclined bottom
forming an angle α with respect to a reference frame.
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Here h(x, t) is the water depth, v(x, t) is the velocity component in the x direction,
g is gravity, α is the angle defining the slope of the bottom (water flowing downhill),
and Cf is a friction coefficient modeling the roughness of the bottom. The acting
forces are hydrostatic pressure, gravity and friction forces.

a) Assume that the gravity force is about of the same size of the force due to
friction and they dominate, i.e. the left hand side of the momentum equation
is nearly zero. Derive a single conservation law for h.
Solution: By the assumption that the gravity force is about of the same
size of the force due to friction and they are much bigger than the forces due
to acceleration and pressure, the left hand side is nearly zero and we get

gh sin(α) = Cfv
2 ⇒ v =

√√√√g sin(α)
Cf

h
1
2 = Kh

1
2 , K :=

√√√√g sin(α)
Cf

.

Inserting the expression for v into (1) we get

ht + ∂

∂x
j(h) = 0, j(h) := K h

3
2 .

b) Show that if for the initial water depth h0 we have that

∂h0(x)
∂x

∣∣∣∣∣
x=x0

< 0

at some point x0, then a shock is formed. Compute the speed of the shock
and show that the speed of the shock is at least 50% higher than the speed
of water downstream.
Solution: We have a shock if

∂

∂x
(c(h0)) = ∂

∂x
(j′(h0)) = ∂

∂x
(3
2Kh

1
2
0 ) = 3

4Kh
− 1

2
0 (h0)x < 0.

So we have a shock if
(h0)x < 0

or in other words if the initial water depth is decreasing in the x direction.
The shock speed is

ṡ = K
h

3
2
l − h

3
2
r

hl − hr
≥ K min

h∈[hr,hl]

∂

∂h
h

3
2 ≥ Kh

1
2
r = 3

2vr,

where vr = Kh
1
2
r is the velocity downstream.
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Problem 5 In this exercise we will derive the equations of motion of the
Kapitza pendulum and analyse their equilibria, see Figure 1. The Kapitza pen-
dulum is a simple pendulum undergoing a vertical oscillation of small amplitude
and high frequency at the pivot. A simple pendulum has two equilibrium config-
urations stable down and unstable up. By applying a vertical oscillation of small
amplitude and high frequency at the pivot, the inverted state of the pendulum
becomes stable (for appropriately high frequencies and small amplitudes).

Denote by

l the length of the pendulum,
m the mass of the pendulum,
g the acceleration due to gravity.

x

y

ϕ

Figure 1: Kapitza pendulum. Pivot in the origin of the coordinate axis. The bob is
attached to a rigid rod of length l. A harmonic vertical displacement is applied at the
pivot to sabilise the pendulum at the unstable equilibrium at ϕ = π.

The coordinates of the bob1 are (x(t), y(t)) and written in terms of the angle ϕ(t)
they satisfy

x(t) = l sin(ϕ) (3)
y(t) = l cos(ϕ) + a cos(νt), (4)

where a cos(νt) is the displacement of the vibrating pivot (amplitude a and fre-
quency ν). A part from the vibration effect, which is already included in the

1The bob of a pendulum is the weight attached at the tip of the pendulum.
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coordinate y(t) in (4), we assume that the only acting force is gravity Fg = mg e2,
where e2 is the vector with components e2 = [0, 1]T .

a) Use Newton second law and show that the equation of motion for the Kapitza
pendulum is

ϕ̈+
(
aν2

l
cos(νt) + g

l

)
sin(ϕ) = 0. (5)

Solution: Differentiating x and y with respect to t twice we obtain the
components of the acceleration

ẍ = −l sin(ϕ) ϕ̇2 + l cos(ϕ) ϕ̈
ÿ = −l cos(ϕ) ϕ̇2 − l sin(ϕ) ϕ̈− aν2 cos(νt).

By Newton second law and since the only acting force is gravity, we get the
equations [

mẍ
mÿ

]
=
[

0
mg

]
,

leading to

ϕ̇2 = cos(ϕ)
sin(ϕ) ϕ̈,

cos(ϕ)2

sin(ϕ) ϕ̈+ sin(ϕ)ϕ̈+ aν2

l
cos(νt) = −g

l
,

and to
ϕ̈ = −

(
g

l
+ aν2

l
cos(νt)

)
sin(ϕ).

b) (This is the most difficult exercise of the exam).
Laboratory experiments show that the stabilization of the inverted pendulum
by applying an oscillatory displacement to the pivot occurs for small enough
amplitudes a and big enough frequencies ν, i.e. when a → 0 and ν → ∞.
This is the regime we are interested in.
Assume that the solution ϕ can be written as a sum of a smooth part θ and
a small and highly oscillatory part δ, so that

ϕ = θ + δ,

and assume that the rapid oscillation has the form

δ = a

l
sin(θ) cos(νt), (6)



Page 8 of 10 TMA4195 Mathamatical Modeling 11th of December 2015

and when a → 0 then δ → 0. Derive the equation which θ should satisfy.
Write such equation as an expansion in powers of δ, where you include only
first order terms in δ.
The period of δ is 2π

ν
, over one such period θ varies very slowly and can be

considered constant. Show that using (6) and integrating the equation over
the time period [t, t+ 2π

ν
] one obtains the following equation for θ

θ̈ = −
(
g

l
sin θ + 1

2
a2ν2

l2
sin θ cos θ

)
. (7)

See the appendix for an explanation of why the solution of (7) is a good
approximation of ϕ− δ.
Solution: Differentiating twice with respect to t the expression for δ we
obtain

δ̈ = −a
l

cos(νt) sin(θ)θ̇2+a

l
cos(θ) cos(νt)θ̈−2a

l
ν cos(θ) sin(νt)θ̇−a

l
ν2 sin(θ) cos(νt).

From this we obtain

θ̈ = ϕ̈− δ̈ = −
(
g

l
+ aν2

l
cos(νt)

)(
sin(θ) + δ cos(θ) +O(δ2)

)
−

(
a

l
cos(νt) sin(θ)θ̇2 − a

l
cos(θ) cos(νt)θ̈+

−2a
l
ν cos(θ) sin(νt)θ̇ − a

l
ν2 sin(θ) cos(νt)

)
,

θ̈ = −g
l

sin(θ)−
(
g

l
+ aν2

l
cos(νt)

)
δ cos(θ) +O(δ2)

−
(
a

l
cos(νt) sin(θ)θ̇2 − a

l
cos(θ) cos(νt)θ̈+

−2a
l
ν cos(θ) sin(νt)θ̇

)
,

Substituting for δ from (6) we finally have

θ̈ = −g
l

sin(θ)−
(
g

l
+ aν2

l
cos(νt)

)
a

l
sin(θ) cos(νt) cos(θ) +O(δ2)

−
(
a

l
cos(νt) sin(θ)θ̇2 − a

l
cos(θ) cos(νt)θ̈ +

−2a
l
ν cos(θ) sin(νt)θ̇

)
,
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Averaging over one period [t, t + 2π
ν

] the obtained equation (while keeping
θ constant, since θ varies slowly compared to δ over such interval of time),
and dropping terms of higher order in δ, we see that all terms which are
multiplied by one of the integrals

ν

2π

∫ t+ 2π
ν

t
cos(νs)ds = 0, ν

2π

∫ t+ 2π
ν

t
sin(νs)ds = 0,

become zero, while there is one term where the factor

ν

2π

∫ t+ 2π
ν

t
cos(νs)2ds = 1

2

appears, so all together we are left with

θ̈ = −
(
g

l
sin θ + 1

2
a2ν2

l2
sin θ cos θ

)
.

c) We now note that equation (7) can be written as

θ̈ = −∂U(θ)
∂θ

,

for some appropriate potential energy function U(θ). Write the equation
as a system for the variables θ and v = θ̇. Find the total energy E(θ) =
K(θ̇) + U(θ) which is conserved along solutions of this system.
Show that θ = π, θ̇ = 0 is a stable equilibrium. (You might use the Liapunov
theorem for proving stability of the equilibrium, see appendix.)
Solution: The system is

θ̇ = v

v̇ = −∂U
∂θ

,

where
U(θ) = −g

l
cos(θ) + 1

4
a2ν2

l2
sin(θ)2.

The total energy E(θ, v) = 1
2v

2 + U(θ) is preserved along solutions of the
system, in fact

dE

dt
= vv̇ − ∂U

∂θ
v = 0.

We see that (0, π) is an equilibrium of the system and we use the Liapunov
theorem given in the appendix to show stability.
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We consider the Liapunov function

L(θ, v) := E(θ, v)− E(π, 0).

This function satisfies the hypothesis of the theorem and therefore the equi-
librium is stable.
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Averaging

Given a differential equation depending on a small parameter ε

ẋ = εf(x, t, ε), x(0) = x0, x, x0 ∈ D ⊂ Rn

with periodic solution with period T the averaged equation is the equation

ż = εf̄(z), z(0) = z0

with
f̄(x) := 1

T

∫ T

0
f(x, s, 0) ds.

It can be shown that for time intervals of size 1
ε
, z(t) is an approximation of

x(t) of order ε. In Figure 2 you can see an illustration of the effect of averaging.
Notice that for a second order equation one can apply the same technique by first
rewriting it as a first order system.

time
0 2 4 6 8 10

p
h
i 
a
n
d
 t
h
e
ta

3.125

3.13

3.135

3.14

3.145

3.15

3.155

Figure 2: Comparison of the solution of the solution of the Kapitza pendulum (5) dotted
line, and of the corresponding averaged equation (7) solid line. In this numerical test
a = 0.1, ν = 50, l = 1 and initial value is π + 0.01. The Kapitza pendulum oscillates
around the equilibrium at π.
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Liapunov stability

Theorem 1 Let ye be an equilibrium for ẏ = F (y). Let L : O → R be differen-
tiable, and let O ⊂ Rn be an open set such that ye ∈ O.

Suppose

(a) L(ye) = 0, L(y) > 0 for y 6= ye,

(b) d
dt
L ≤ 0 in O − {ye},

then ye is stable.


