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Exam in TMA4195 Mathematical Modeling 14.12.2016
Solutions

Problem 1 We insert
y = y0 + εy1 + ε2y2 +O(ε3)

into
ẏ = e−εy, y(0) = 1

and expand the exponential to find that

ẏ0 + εẏ1 + ε2ẏ2 +O(ε3) = 1− εy + 1
2ε

2y2 +O(ε3)

= 1− ε(y0 + εy1 +O(ε2)) + 1
2ε

2(y0 +O(ε))2 +O(ε3)

= 1− ε(y0 + εy1) + 1
2ε

2y2
0 +O(ε3)

and
y0(0) + εy1(0) + ε2y2(0) +O(ε3) = 1 + 0 · ε+ 0 · ε2 +O(ε3).

Since these equalities hold for all ε, it follows that

ẏ0 = 1, y0(0) = 1,
ẏ1 = −y0, y1(0) = 0,

ẏ2 = −y1 + 1
2y

2
0, y2(0) = 0.

Solving first for y0, we get y0 = t+ 1, which we then insert into the equation for y1 to get

ẏ1 = −(t+ 1), y1(0) = 0 ⇒ y1 =
∫ t

0
(−τ − 1) dτ = −1

2t
2 − t.

Inserting this into the equation for y2 we get

ẏ2 = 1
2t

2 + t+ 1
2(t+ 1)2 = t2 + 2t+ 1

2 , y2(0) = 0 ⇒ y2 = 1
3t

3 + t2 + 1
2t.

In total,

y(t) = t+ 1− ε(1
2t

2 + t) + ε2(1
3t

3 + t2 + 1
2t) +O(ε3).



TMA4195 Mathematical Modeling, 14.12.2016, solutions Page 2 of 9

Problem 2 We may assume a relation

Φ(U,L,H, θ, ρ, g, e, µ) = 0. (1)

The dimensional matrix A is

L H θ ρ g e µ U
m 1 1 0 −3 1 1 −1 1
s 0 0 0 0 −2 0 −1 −1

kg 0 0 0 1 0 0 1 0

The rank of A is 3 and we thus have 8 − 3 = 5 dimensionless combinations. Natural choices
for core variables (do not choose U !) are L, ρ and g. The dimensionless combinations are then

π1 = U

L•ρ•g•
= U

L
1
2 g

1
2
, π2 = θ, π3 = e

L
, π4 = H

L
,

π5 = µ

L•ρ•g•
= µ

ρg
1
2L

3
2

or π′5 = π2
5 = µ2

ρ2gL3 .

The second part of Buckingham’s Pi Theorem states that any physical relation (1) is equivalent
to a relation between the associated dimensionless combinations

Ψ(π1, π2, π3, π4, π5) = 0.

Solving for π1 would give the relation

π1 = Ψ̄(π2, π3, π4, π5),

or
U = L

1
2 g

1
2 Ψ̄(θ, e

L
,
H

L
,

µ

ρg
1
2L

3
2

).

This is the most general dimensionally consistent model for U .

Problem 3 Because of the damping,

max |x∗(t)| ≤ x0,

and hence the natural space scale is x0.

Time scales are found by balancing terms in the equation, setting

x∗ = x0x, t∗ = Tt, where t, x, x′, x′′ ∼ O(1).
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By the equation,

m
x0

T 2
d2x

dt2
= −kx0x− r

(
x0

T

dx

dt

)3

.

Balancing the first and second term:

m

T 2 ∼ k ⇒ T ∼
√
m

k

Balancing the first and third term:

m

T 2 ∼
rx2

0
T 3 ⇒ T ∼ rx2

0
m

Balancing the second and third term:

k ∼ rx2
0

T 3 ⇒ T ∼
(
rx2

0
k

) 1
3

The three natural time scales are:
√

m
k
, rx

2
0

m
and

(
rx2

0
k

) 1
3 .

When the first two terms dominate, T =
√

m
k
. The equation then becomes

kx0
d2x

dt2
= −kx0x− r

x3
0(

m
k

) 3
2

(
dx

dt

)3

,

or
d2x

dt2
= −x− ε

(
dx

dt

)3

, ε = r
x2

0k
1
2

m
3
2
.

Problem 4
Humans: Population depends on the amount of fish in the ocean. More fish means more
money/work, and thus more people. Without the fish, people move away.
Fish: The model is a logistic growth model plus a death/harvest term (−xy). The harvest
rate depends on the size of the human population. With no humans, the fish population would
follow logistic growth (y(1− y) after re-scaling) and converge to the carrying capacity y = 1.

The equilibrium points are the solution of F (x, y) = 0, where

F (x, y) =
(
ẋ
ẏ

)
=
(

−x+ y
1
5(y(1− y)− xy)

)
.
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Inserting x = y into the equation for ẏ, we get

0 = y − y2 − xy = y(1− 2y),

which we solve to get the two equilibrium points, (0, 0) and (1
2 ,

1
2).

To determine the stability we compute the Jacobi matrix of the right hand side F :

DF (x, y) =
(
−1 1
−1

5y
1
5(1− 2y − x)

)

At the equilibrium point (0, 0),

DF (0, 0) =
(
−1 1
0 1

5

)
,

with eigenvalues λ+ = 1
5 and λ− = −1. Since max±Re(λ±) > 0 (one eigenvalue is positive),

we can conclude that (0, 0) is unstable (here it is a saddle point).

At the equilibrium point (1
2 ,

1
2),

DF
(

1
2 ,

1
2

)
=
(
−1 1
− 1

10 −
1
10

)

We solve to find the eigenvalues of this matrix,

det
(
DF

(
1
2 ,

1
2

)
− λI

)
= 0 ⇒ λ2 + 11

10λ+ 2
10 = 0 ⇒ λ± = −11

20 ±
√

41
20 .

Since max±Re(λ±) < 0 (both are negative), (1
2 ,

1
2) is a stable equilibrium point (a stable node

here).

From the stability analysis of the two equilibrium points, we can conclude that for x(0), y(0) >
0, (x(t), y(t)) will converge towards the stable equilibrium point (1

2 ,
1
2) as t→∞.

Problem 5

a) Conservation of mass in D:

d

dt

∫∫
D
ρ dx dz = −

∫
∂D

~j · ~n dS + 0

change in D = flux in/out + production
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where the flux is ~j = ρu(x, t) · ~ex, and ~n is the outward normal vector at the boundary
∂D of D. There is no flux across the top and bottom part of the boundary ∂D, so∫

∂D

~j · ~n dS =
∫
∂D∩{x=a}

~j · ~n dS +
∫
∂D∩{x=b}

~j · ~n dS.

Since ~n = −~ex at x = a and ~n = ~ex at x = b,∫
∂D∩{x=a}

~j · ~n dS =
∫ h(a,t)

0
ρu(a, t)(−1) dz = −ρ(hu)(a, t),∫

∂D∩{x=b}
~j · ~n dS =

∫ h(b,t)

0
ρu(b, t)(+1) dz = +ρ(hu)(b, t).

Moreover, ∫∫
D
ρ dx dz =

∫ b

a

∫ h(x,t)

0
ρ dx dz = ρ

∫ b

a
h(x, t) dx.

Hence, the conservation of mass in D equation takes the form

d

dt

∫ b

a
h(x, t) dx = −(hu)(b, t) + (hu)(a, t).

To find the PDE, take a = x and b = x + ∆x, divide by ∆x, and interchange d
dt

and∫
. . . dx;

1
∆x

∫ x+∆x

x
ht(y, t) dy = −(uh)(x+ ∆x, t)− (uh)(x, t)

∆x .

Then we send ∆x→ 0, noting that

lim
∆x→0

1
∆x

∫ x+∆x

x
ht(y, t) dy = lim

∆x→0

(
ht(x, t) + max

|x−y|<∆x
|ht(y, t)− ht(x, t)|

)
= ht(x, t)

since ht is continuous, and find that

ht(x, t) = − ∂

∂x
(uh)(x, t)

for any point x and t > 0.

b) A shock solution starting at x = 0 is given by

h(x, t) =

hl, x < s(t),
hr, x > s(t),
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where hl 6= hr are constants and the shock curve s(t) satisfies the Rankine–Hugoniot
condition

ṡ = j(hl)− j(hr)
hl − hr

= c
h

3
2
l − h

3
2
r

hl − hr
, s(0) = 0,

i.e. s(t) = ṡ · t.
To check whether h(x, t) is increasing or decreasing, we note that h is the unique solution
of the Riemann problem 

ht + c ∂
∂x
h

3
2 = 0,

h(x, 0) =

hl, x < 0,
hr, x > 0.

This problem has a shock solution if and only if the characteristics collide.
The characteristic equations are (z(t) = h(x(t), t))

ẋ = j′(z) = 3
2cz

1
2 := c(z), x(0) = x0

ż = 0, z(0) = h(x(0), 0) = h(x0, 0) =

hl, x0 < 0,
hr, x0 > 0,

where the function c(z) = j′(z) is different from the constant c. The solutions are

x(t) = x0 + c(h(x0, 0))t.

We get collisions if and only if the left characteristic overtake right characteristic, i.e. if

c(hl) > c(hr), or equivalently, hl > hr.

Hence the shock solution h(x, t) is decreasing in x.

c) When rainfall moves from west to east, water levels/height will increase in the western
part of the river first. The level h of the rivers is thus decreasing from west to east. Since
this is the direction of flow of the Danube, and against the flow direction in the Rhine,
shocks/flood waves will form in the first river but not in the second.
The reason for this is that shocks form if and only if (h0)x < 0, i.e. h0 is decreasing
somewhere. To show this, we use the first shock analysis from the notes of Krogstad: we
find the first time two nearby characteristic curves x(t) and y(t) collide. If x(t) and y(t)
start at x0 and x0 + ∆x respectively, then from part b),

x(t) = x0 + t · c(h(x0)),
y(t) = x0 + ∆x+ t · c(h(x0 + ∆x)).
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We have collisions at time t if x(t) = y(t), which means

∆x = t
(
− c (h (x0 + ∆x)) + c (h(x0))

)
or t = −1

c(h(x0+∆x))−c(h(x0))
∆x

.

Since nearby characteristics collide first, the first time x(t) collides with another charac-
teristic is

tc(x0) = lim
∆x→0

−1
c(h(x0+δx))−c(h(x0))

∆x

= − 1
d
dx

[c(h0(x)]x=x0

.

Since
d

dx
c(h0(x)) = c′(h0(x)) · h0

′(x) = c
3
4(h0(x))− 1

2 · h0
′(x),

we have that
tc(x0) > 0 if and only if h0

′(x0) < 0.
Hence, we will get a shock (in positive time) if and only if there exists an x0 such that
h0
′(x0) < 0.

Problem 6
We let jv(ρ) := 1

2j(ρ) be scaled flux inside the village (−1 ≤ x ≤ 1), and find its maximum:

d

dρ
jv(ρ) = 0 ⇒ 1

2(1− 2ρ) = 0 ⇒ ρ = 1
2 ,

and
max
ρ
jv(ρ) = jv(

1
2) = 1

2
1
2(1− 1

2) = 1
8 .

Hence by the flux condition at x = 1,

j(ρ) = jv(ρ) = 1
8 at x = 1.

We convert this to a boundary condition on ρ:

j(ρ) = 1
8 ⇔ ρ(1− ρ) = 1

8 ⇔ ρ2 − ρ+ 1
8 = 0 ⇔ ρ± = 1

2 ±
1
2

√
1
2 ,

Only inflow conditions can be imposed, and in the domain x > 1 inflow means positive char-
acteristics speed c(ρ). Here c(ρ) = j′(ρ) = 1− 2ρ and

c(ρ±) = 1− 2ρ± = ∓
√

2
2 .
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Hence c > 0 for ρ = ρ− = 1
2

(
1−

√
2

2

)
.

The correct boundary value problem then becomes
ρt + ∂

∂x
j(ρ) = 0, x > 1, t > 0,

ρ = ρ−, x = 1, t > 0,
ρ = 0, x > 1, t = 0.

This we solve by the method of characteristics (z(t) = ρ(x(t), t)):ẋ = j′(z) = c(z), x(t0) = x0,

z = 0, z(t0) = ρ(x(t0), t0).

The solution is
x(t) = x0 + (t− t0) · c(ρ(x(t0), t0).

Characteristics from t = 0 (t0 = 0, ρ(x(t0), t0) = ρ0(x0) = 0):

x(t) = x0 + t · c(0) = x0 + t.

Characteristics from the boundary (x0 = 1, ρ(x0, t) = ρ−):

x(t) = x0 + t · c(ρ−) = x0 +
√

2
2 t.

Since c(0) = 1 >
√

2
2 = c(ρ−), the characteristics from the boundary and the initial line will

move away from each other and there will be a dead sector starting at x = 1, t = 0:
√

2
2 t ≤ x− 1 ≤ t.

t

x
0

1 x0

t0

ρ=ρ

ρ=0

-

ρ=?
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Hence, the physical solution in the sector is a rarefaction wave, i.e. a solution of the form

ρ(x, t) = ϕ
(
x− 1
t

)
.

Inserted into the equation, we get

0 = ρt + ∂

∂x
j(ρ) = −ϕ′ · x− 1

t2
+ c(ϕ)ϕ′1

t
,

and multiplying by t
ϕ′ (assuming ϕ′ 6= 0),

c(ϕ) = x− 1
t

⇒ 1− 2ϕ = x− 1
t

⇒ ϕ = 1
2

(
1− x− 1

t

)
.

The total solution is then

ρ(x, t) =


0, x− 1 > t,
1
2

(
1− x−1

t

)
,

√
2

2 t < x− 1 < t,

ρ−, 0 < x− 1 <
√

2
2 t.


