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Department of Mathematical Sciences

Exam in TMA4195 Mathematical Modeling 14.12.2016
Solutions

Problem 1 We insert
y=yo+ ey + €ys + O()
into
y=e Y, y(0) =1
and expand the exponential to find that
‘ 1
Yo + ety + Y+ O() =1 — ey + §€2y2 + O(€*)
1
=1—e(yo+eys + O(%)) + 562(90 +0()* + O(€)

1
= 1= ey +em) + 56 + O(E)

and
y0(0) + €y1(0) + €2(0) + O(€7) = 1+ 0- € +0- € + O(e").

Since these equalities hold for all €, it follows that

3)0 = 17 yo(o) = 1’
?)1 = —Yo, yl(o) = 07
. 1
o = = + 55, y2(0) = 0.
Solving first for yy, we get yo = t 4+ 1, which we then insert into the equation for y; to get

¢ 1
==+, wO=0 = y=[(r-ldr=—-t

Inserting this into the equation for y, we get

1 1 1 1 1
y'2:§t2+t+§(t—l—1)2:t2+2t—|—§, y2(0) =0 = y2=§t3—|—t2—|—§t.

In total,

1 1 1
y(t) =t+1— e(§t2 + 1) + 62(5253 + 12+ 5t) + O(€%).
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Problem 2 We may assume a relation
B(U, L. H,0. p,g,e, 1) = 0. (1)

The dimensional matrix A is

‘ L HO p ge p U
m| |l 10 -3 11 -1 1
s|0 00 0 -20 -1 -1
kelO 00 1 00 1 O

The rank of A is 3 and we thus have 8 — 3 = 5 dimensionless combinations. Natural choices
for core variables (do not choose U!) are L, p and g. The dimensionless combinations are then

U U p e H
T = = , Ty =0, T = —, T —,
1 Lopogo L%g% 2 3 I 4 I
Ty = B __H or =72 = L
Lopogo pg%L% 5 5 p2gL3

The second part of Buckingham’s Pi Theorem states that any physical relation (1) is equivalent
to a relation between the associated dimensionless combinations

\I](/]Tla T, T3, T4, 7T5) =0.
Solving for m; would give the relation

™ = ‘Ij<7727 T3, T4, 71-5)7

or
11 e H p
U=L2g2¥(0,—, —, .
This is the most general dimensionally consistent model for U.

Problem 3 Because of the damping,
max |x*(t)] < xo,
and hence the natural space scale is xy.
Time scales are found by balancing terms in the equation, setting

=z, t* =Tt, wheret,z,2', 2" ~ O(1).
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By the equation,
xo d*x

wdw o (Todr
e gz = T T T g

Balancing the first and second term:

m [m

Balancing the first and third term:

m  rz rad
— e~ = T~—
T2 T3 m

Balancing the second and third term:

1
. 2 2\ 3
The three natural time scales are: /%, =0 and (%) .

When the first two terms dominate, T" = \/% . The equation then becomes

2 8 (dr\’
kxo—f:—lmox—r %3($> ,

dt

»

. ()"

or

Problem 4
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Humans: Population depends on the amount of fish in the ocean. More fish means more

money/work, and thus more people. Without the fish, people move away.

Fish: The model is a logistic growth model plus a death/harvest term (—zy). The harvest
rate depends on the size of the human population. With no humans, the fish population would
follow logistic growth (y(1 — y) after re-scaling) and converge to the carrying capacity y = 1.

The equilibrium points are the solution of F'(x,y) = 0, where

AN —x+y
Fla,y) = <y> B (é(y(l —y) — zy)
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Inserting = = y into the equation for ¢, we get
0=y—y" —ay=y(l-2y)
which we solve to get the two equilibrium points, (0,0) and (3, 3).

To determine the stability we compute the Jacobi matrix of the right hand side F"

At the equilibrium point (0, 0),

5

DF(0,0) = <_01 }> )

with eigenvalues Ay = £ and A_ = —1. Since maxy Re(Ay) > 0 (one eigenvalue is positive),
we can conclude that (0,0) is unstable (here it is a saddle point).

At the equilibrium point (3, 1),

N[

-1 1
DF (3,3) = <_1 _1>
We solve to find the eigenvalues of this matrix,

11, 2 11 | V41
11 _ 2 — — —
det (DF (§,3) = M) =0 = X4 A+ 5=0 = d=— -

Since maxy Re(Ay) < 0 (both are negative), (3, 3) is a stable equilibrium point (a stable node
here).

From the stability analysis of the two equilibrium points, we can conclude that for z(0), y(0) >

0, (z(t),y(t)) will converge towards the stable equilibrium point (3, 3) as ¢ — oo.

Problem 5

a) Conservation of mass in D:

d// pdxdz:—/ j-idS+0
dt JJp oD

change in D = flux in/out + production
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where the flux is j = pu(zx,t) - €., and 7 is the outward normal vector at the boundary
0D of D. There is no flux across the top and bottom part of the boundary 9D, so

/_}mwz }ﬁw+/ j.7ds.
oD oDN{zx=a} ODN{x=b}

Since 7 = —€, at x = a and 7 = €, at x = b,
> h(a,t)
/ joias= [ pula.t)(~1) dz = —p(hu)(a, )
ODN{z=a} 0

/6Dﬁ{zb}

.
St

h(b,t)

dS::/ pulb, £)(+1) dz = +p(hu) (b, t).
0

Moreover,

b rh(zt) b
// pdxdz:/ / pdxdz:p/ h(z,t)dx.
D a JO a

Hence, the conservation of mass in D equation takes the form
d b
%/h@w@:4mm@+mm@w

To find the PDE, take a = x and b = x + Az, divide by Az, and interchange % and
[ ... dz;

Then we send Ax — 0, noting that

) 1
im —
Az—0 Az

T+Ax
/ ht(ya t) dy = AhIEO (ht(xu t) + max |ht<y7t) - ht(xa t)|> - ht(x7t)

lz—y|<A

since h; is continuous, and find that

hi(z,t) = _883;’ (uh)(z,t)

for any point z and ¢ > 0.

b) A shock solution starting at = = 0 is given by

W) = {hl, x < s(t),

hey x> s(t),
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where h; # h, are constants and the shock curve s(t) satisfies the Rankine-Hugoniot
condition
3 3
IO =) B b
hi — h, hy— h’

ie. s(t) =5t

To check whether h(z,t) is increasing or decreasing, we note that h is the unique solution
of the Riemann problem
he +c2hi =0,
hy, < 0,
hw,0) =4 "
h., x>0.
This problem has a shock solution if and only if the characteristics collide.

The characteristic equations are (z(t) = h(z(t),t))
t=j'(z) = %cz% =c(2), z(0) =

£=0, (0) = h((0),0) = h(zo,0) = {hza 7 <0,

h,., x¢>0,
where the function ¢(z) = j'(z) is different from the constant ¢. The solutions are
x(t) = o + c(h(xg, 0))t.
We get collisions if and only if the left characteristic overtake right characteristic, i.e. if
c(hy) > c(h,), or equivalently, hi > h,.

Hence the shock solution h(z,t) is decreasing in x.

When rainfall moves from west to east, water levels/height will increase in the western
part of the river first. The level h of the rivers is thus decreasing from west to east. Since
this is the direction of flow of the Danube, and against the flow direction in the Rhine,
shocks/flood waves will form in the first river but not in the second.

The reason for this is that shocks form if and only if (hg), < 0, i.e. hg is decreasing
somewhere. To show this, we use the first shock analysis from the notes of Krogstad: we
find the first time two nearby characteristic curves x(¢) and y(t) collide. If z(t) and y(t)
start at xo and zp + Az respectively, then from part b),

x(t) = a9+t - c(h(zo)),
y(t) =x0+ Az +t-c(h(xg + Ax)).
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We have collisions at time ¢ if () = y(¢), which means

—1

c(h(zo+Ax))—c(h(zo))
Az

Ax:t(—c(h(x0+Ax))—i—c(h(xo))) or t=

Since nearby characteristics collide first, the first time z(¢) collides with another charac-
teristic is

t ( ) = lim é6x))—c(h(xo d
c\Zo 1 c(h(xzo+dz = ‘
Az—0 (h(zo ))—c(h(o)) dx [C(ho(l’)]m o

Since

d / / 3 —1 /
Z=clho(2)) = €' (ho(2)) - ho'(2) = ¢ (ho(2)) 72 - ho'(2),

we have that
te(xo) >0 if and only if ho'(z0) < 0.

Hence, we will get a shock (in positive time) if and only if there exists an zy such that
ho,(l’o) < 0.

Problem 6
We let ji,(p) := 3j(p) be scaled flux inside the village (—1 < 2 < 1), and find its maximum:

d 1 1
—Julp) =0 = -(1-2p)=0 = = -,
@J@ 2( P) P=3
and 111, 1. 1
w(p) = ju(=) = ==(1 =z,
max jy (p) J%) 55 5) =3

Hence by the flux condition at x =1,

ip)=7gulp) =5 at z=1
We convert this to a boundary condition on p:

1 1 1 1 1 7/1
i(p)=- © pll—-p)== & pP—p+-=0 & p-=_4_4/=
3(p) p—p) =g prroptyg rrESES S

Only inflow conditions can be imposed, and in the domain x > 1 inflow means positive char-
acteristics speed ¢(p). Here ¢(p) = j'(p) =1 — 2p and

V2

co(p*) =1-2p" = :FT-
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Hencec>0forp:p*:%(1—§).
The correct boundary value problem then becomes

pi+Zjlp)=0, x>1,t>0,
p=p, r=1,1>0,
p =0, z>1,1=0.

This we solve by the method of characteristics (z(t) = p(z(t),1)):
i=j(z) =c(z),  x(to) = o,
= 07 Z<t0) = p('r(tO))tO)
The solution is
x(t) = zo + (t — to) - c(p(x(to), to)-
Characteristics from ¢t = 0 (ty = 0, p(z(to), to) = po(xe) = 0):
[B(t) :$0+t-c(0) :l’0+t.

Characteristics from the boundary (zg = 1, p(zo,t) = p~):

x(t)=xo+t-clp”) =z0+ \ft.

Since ¢(0) =1 > ? = ¢(p™), the characteristics from the boundary and the initial line will
move away from each other and there will be a dead sector starting at x =1, t = 0:

V2

—t<z—-1<t.
2

A p=p"
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Hence, the physical solution in the sector is a rarefaction wave, i.e. a solution of the form

p(,t) 290(1':1).

Inserted into the equation, we get

0 z—1 1
0=p, + —7 — . !
Pe 8xj<p) v t

and multiplying by % (assuming ¢ # 0),

r—1 r—1 1 r—1
c(p) = ; = 1-2¢p= ; = g0—2<1— )

The total solution is then

0 r—1>t,
plx,t) = %(1—””—_1), §t<x—1<t,
P~ 0<z—1< ¥t



