
Exam in Numerical Linear Algebra (TMA4205)

Monday, December 17, 2012

Time: 09:00 - 13:00
Grades available: January 7, 2013

Aids: Code C - The following printed/hand written aids are allowed.

• Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.

• Trefethen and Bau, Numerical linear algebra or Notes from the same book

• Golub and Van Loan, Matrix Computations or Notes from the same book

• Own lecture notes from the course including handouts from course.

Problem 1 The real nonsingular matrix

A =









2 0 0 1
0 3 −1 1
0 −1 2 0
1 1 0 2









is unitarily similar to an upper Hessenberg matrix H.

a) Show that H is also tridiagonal.

b) Is H positive-definite?
[Hint : Use Gerschgorin’s theorem to investigate bounds for the eigenvalues].

c) Use Householder reflections to find a unitary matrix Q so that H = QTAQ.
[You may use the information given at the footnote on the last page].

Problem 2

a) Consider a matrix of the form
A = I + µS,

where µ is a scalar and S is skew-symmetric, and I is the identity matrix.

i) Show that A is positive definite.
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ii) Consider the Arnoldi process for A. Show that the resulting Hessenberg matrix
will have the following tridiagonal form:

Hm =













1 −η2
η2 1 −η3

· · ·
ηm−1 1 −ηm

ηm 1













.

b) Suppose Ax = b is a linear system where A is symmetric and positive-definite. Consider
an orthogonal projection method for which the search and constraint spaces are given
by L = K = span {r0, Ar0} where r0 = b − Ax0 is the current residual. Let x̃ =
x0 + αr0 + βAr0 denote the solution update, where α and β are some real constants.
Prove the error satisfies:

‖ẽ‖2A =

[

1− α
(r0, r0)

(A−1r0, r0)
− β

(Ar0, r0)

(A−1r0, r0)

]

‖e0‖2A

where ẽ = x − x̃, e0 = x − x0, ‖y‖A =
√

(Ay, y). Derive the expressions for α and β.

Find an expression for the lower bound of the term β
(Ar0, r0)

(A−1r0, r0)
. The answer must be

expressed only in term of λmin and λmax, the minimum and maximum eigenvalues of A
respectively. [Hint: The spectrum of an SPD matrix provides a bound for its Rayleigh
quotients].

Problem 3 In a finite difference discretization of the one-dimensional Poisson equation

−uxx = f, in Ω = (0, 1),

u(0) = u(1) = 0,
(1)

on a uniform grid we obtain a linear system Ax = b where A = tridiag(−1, 2,−1) ∈
R
(n−1)×(n−1), x ∈ R

n−1 is the vector of unknowns, and h = 1
n is the mesh parameter. The

eigenvalues of A are known to be given by

λm = 2− 2 cos
(mπ

n

)

, m = 1, . . . , n− 1.

The symmetric successive overrelaxation (SSOR) method for solving the system Ax = b is an
iterative method that can be described in the following two steps

(D − ωE)xk+1/2 = [ωF + (1− ω)D)] xk + ωb,

(D − ωF )xk+1 = [ωE + (1− ω)D)] xk+1/2 + ωb,

k = 0, 1, . . ., where ω is the relaxation parameter, and D is the diagonal part of A, while E and
F define, respectively, the lower and the upper triangular parts of A so that A = D−E −F.

The iteration matrix is defined as a matrix G so that the iterative method can be expressed
as a fixed point iteration xk+1 = Gxk + f .

a) Prove that the iteration matrix for the SSOR method can be expressed as

Gω = I − ω(2− ω)(D − ωF )−1D(D − ωE)−1A,

where I is the identity matrix.
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b) To use the SSOR as preconditioning for the conjugate gradient method we consider a
splitting of the form A = M −N , so that the SSOR iteration takes the form

xk+1 = M−1Nxk +M−1b = xk +M−1rk,

where rk is the residual vector, and G = M−1N is the iteration matrix. The matrix M

is the required preconditioner. Assume that ω ∈ (0, 2). Deduce from Gω an expression
for the preconditioner M = Mω, and show that it is symmetric and positive-definite.
[Hint : In this example F = ET ].

c) For ω ∈ (0, 2) the matrix M−1
ω A of the preconditioned system is known to have condition

number
2an2 + λmin

(2− ω)λmin
, where a =

(2− ω)2

4ω
and λmin is the minimum eigenvalue of A.

Show that the optimal value of ω for the preconditioner Mω is given by

ωopt =
2
√
γ

1 +
√
γ
,

where γ =
n2

λmin
. Assume that n → ∞. How does the condition number of M−1

ω A varies

as a function of n when ω = ωopt?

Problem 4 Consider the matrix

A =









−1 0 1
1 −1 0
0 1 −1
1 0 1









.

a) Under which conditions can the normal equation ATAx = AT b be solved using conjugate
gradient iterations? Are these conditions satisfied in this case?

b) Find the condition number of ATA in the 2-norm. Would you expect any improvement
in the conjugate gradient method by using diagonal preconditioning?

c) Calculate the singular values of A.

d) Find the 1-, 2-, ∞- and Frobenius-norms of A?
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Some useful information:

For problem 1. In the Householder reduction into Hessenberg form, the first Householder
reflector applied to the left and right of A, reduces it to the matrix









2 −1 0 0
−1 2 0 1
0 0 2 1
0 1 1 3









.

Kantorovich inequality. Suppose B ∈ R
n×n is a symmetric and positive definite matrix.

Then
(Bx, x)(B−1x, x)

(x, x)2
≤ (λmax + λmin)

2

4λmaxλmin
,

for all x ∈ R
n, x 6= 0, where λmin and λmax represent the smallest and largest eigenvalues of

B respectively.
Condition number. The condition number of a matrix A is given by the formula κ(A) =
‖A‖‖A−1‖. In the p-norm, this is given by κp(A) = ‖A‖p‖A−1‖p.
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