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M OTIVATION

discretization
e.g. FEor FD

Large sparse
linear system

Physical Math model
system (e.g. PDE) (AX = b)
A
|
|
NLA:
|
Numerical
methods:
esp. ltera-

tive methods

Here x € R" is the unknown, while A € R™" and b € R" are given.
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VECTOR NORMS

X1
X2
Letx=| . |[eC"
Xn
n
x|l = Z Il (1-norm)
j=1
n 1/2
2
Xl = | > Ix (2-norm)
-
n 1/p
IXllp = | D PP (p-norm)
j=1
IX[loo = Max [X;] (max -norm)
1<j<n NTNU
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VECTOR NORMS

Inequalities

e [X][>0, VxeC"

o |lax|| = |a|lX|], ¥XxeC",YaeC

o IX+yll<IXII+lyll, Vx,yeC" (triangle inequality)
e [(X,y)I<IXIlyll,  (Cauchy-Schwarz)

where (x,y) denote the inner-product associated to ||-||
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VECTOR NORMS

Euclidean inner-product

Letx,y e C".
X1 Y1
Writex =| : |, y=| :
Xn Yn
Y1 n
(x,y) =x"y :[ X1,...5Xn ] = Z)?,-yj
Yn 1=t

where x* denotes the adjoint. In the real case (i.e. when x € R") we write
x*as x' (the transpose).
1Observe that ||x]l, = Vx*x

x|l geometrically represents the length of the vector x
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M ATRIX NORMS

LetA = (aij) e c™n

DEerNITION (INDUCED NORM)

We define by
[IAX]]
[JA|| = max ——
x#0  |IX]|
xech
the matrix norm of A induced by a vector norm || - || in C".
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M ATRIX NORMS

Examples

n
JIAXIy
Al = max = axZa.,
x20 Il 1gen &

n
AN, =m x” X — max 3 jay)
|| || 1<i<n =

IAll, = \/p(A*A) SNS

where p() denotes the spectral radius.

(induced 1-nom)

(induced co-norm)

(induced 2-norm)
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M ATRIX NORMS
Frobenius norm

Al = {iiw] = (r(AA

i=1
where tr() represents the trace
Inequalities

e JA] >0, VAeC™ and A =0 A=0
leAll = |l A, YAeC™ qeC

A+ BJ| <Al +IB]l, VA,BeC™

e |IAB|| <[IAlIlIB]l VA,BeC™"

o |AX]| < JIAIIIX]l, VA eC™ vxeCn

= \/tr (AA¥)
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M ATRIX-VECTOR PRODUCTS

X1
LetA=(gj) eC™andx =| : |eC".
Xn
Write

ap

y

AX = X181 + X282 + ...+ Xpan

A= [al

where a; € C" represent the columns of A.
We have that

i.e. Ax is a linear combination of columns of A with coefficient vector x.
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M ATRIX-VECTOR PRODUCTS

Let A= (aj) e C™" and X = [Xy,...,Xn], @ row vector.
Now write .

ai

a

an

where &; represents row i.
Then
XA = X181 + Xo8p + ...+ Xndn

i.e. XA is a linear combination of rows of A with coefficient vector X.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no 3 Kometa, TMA4205




M ATRIX-VECTOR PRODUCTS

Matrix-matrix products

Let A= (g;) € C™" and B = (bj) € C™",
such that

A= {a]_

an] and B—[bl

We have

Aby

AB = {Abl

Abp,

i.e. the matrix-vector product Ab; yields column j of the matrix-matrix
product AB.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no Kometa, TMA4205



SOME IMPORTANT CLASSES OF MATRICES

Assume A € C™N

Hermitian (symmetric, for real A)

A=A (self-adjoint)
Positive-definite

X*AXx >0, ¥xeC,x=#0

Note: A is called semi-positive-definite if the inequality in not strict (i.e.
X*AX 20 Vx #0).
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SOME IMPORTANT CLASSES OF MATRICES
Assume A € C™N

Unitary

A'A=AA" =

The columns of A are are orthogonal with respect to the Euclidean inner
product; i.e. a'a; = 0 for i # j. More precisely a’a; = ¢j (orthonormality).

Q unitary matrix = ||Qx||, = IIxll, ¥x eC"  (Q preserves length)
Also Q| = 1.

Normal

A'A = AA*

Observe that all unitary and Hermitian matrices are normal.
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SOME IMPORTANT CLASSES OF MATRICES
Assume A € C™N

Regular or nonsingular

det(A) 20
Sparse

Most of the entries are zeros.
Examples: Diagonal, tri-diagonal, banded etc

Idempotent

AZ =A

Also called a projector
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SOME IMPORTANT CLASSES OF MATRICES

Assume A € C™"
Triangular
Two types

1) Upper triangular: a; =0, Vi > ]
i.e. all entries below the leading diagonal are zeros.

2) Lower triangular: a; =0, Vi <]
i.e. all entries above the leading diagonal are zeros.
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EIGENVALUES

Assume A € C™"

DEeriNiTION (EIGENVALUE & EIGENVECTOR)

An eigenvector of A refers to any nonzero vector v € C" such that
Av = Av

for some scalar A € C.
The corresponding scalar A is called an eigenvalue of A.
Thus the pair (v, 4) is called an eigenpair.
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EIGENVALUES
Corresponding to each eigenvalue 2 is a subspace

EA_{XECn

AX = /lx}

called the eigenspace. It is the nullspace of the matrix (1l — A)
E, is invariant under A (i.e. AE, c E,). AlsodimE, > 1.

We have the following definitions:

o(A) = the set of all eigenvalues of A = spectrum of A

p(A) = ma(l/i() |4], is called the spectral radius of A.
A€o

Amai( |1
k=«k(A) = 7 T is called the condition number of A.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no Kometa, TMA4205




EIGENVALUES

Characteristic polynomial

pa(z) :=det(zl -A), zeC

Roots of pa form the eigenvalues of A;
i.e. 1is an eigenvalue of A if and only if pa(1) = 0.

By the Fundamental Theorem of Algebra pa has n roots in C;
SO we can write

Pa(z) = (2 - 41)(z = 12) -+ (2 = n)
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EIGENVALUES
Defective matrix

e The algebraic multiplicity of an eigenvalue A refers to the number of
times A occurs as a root of pa.

e The algebraic multiplicity is always greater than or equal to its
geometric multiplicity (namely, the dimension of its eigenspace, i.e.
dimE)).

e A simple eigenvalue is one with algebraic multiplicity 1.

DEermNiTION (DEFECTIVE MATRIX)

An eigenvalue whose algebraic multiplicity exceeds its geometric
multiplicity is called defective.
A defective matrix is one that has a defective eigenvalue.
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EIGENVALUES

Defective matrix

Example:

2 1 2
A= 2 1 |is defective. B = 2 is nondefective.
2 2

All diagonal matrices are nondefective.
All diagonalizable matrices are nondefective, and vice-versa.

Question: What do we mean by diagonalizable?
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EIGENVALUES

Diagonalizable matrix

DEFINITION (DIAGONALIZABLE MATRIX)

A matrix A € C™" is diagonalizable if there exists an invertible matrix X
such that the product

XIAX = A
is a diagonal matrix.

Thus A and A are similar matrices.

The diagonal entries of A = diag ([11,...,1n]) are the eigenvalues of A,
while the columns of X = [vll .. .|vn] are the corresponding eigenvectors.
Check that AX = XA = AVj = 4V;.
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EIGENVALUES

THEOREM (GERSCHGORIN)
Let A= (a;) € C™". Foreachi=1,...,ndefiner; = Z}‘Zl ajj, and let

Ci= {z € C‘ |z — aj| < ri} represent a circular disc of radius r; and center
aji in the complex plane. Then

1) every eigenvalue of A lies in at least one of the discs C;, i =1,...,n;

2) if the union of any k discs forms a connected domain Dy that is disjoint

from the remaining (n — k) discs, then there are precisely k
eigenvalues within Dy.
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EIGENVALUES
Some important results

1) All the eigenvalues of a Hermitian matrix are real.

2) Suppose A1g,..., A, denote all the eigenvalues of A € C™" (including
multiplicities). Then

n

wmthjmdMM:i@
=1

j=1

where tr(A) = 3, a; is the trace of A.

3) All normal matrices A are unitarily diagonalizable. That is, there is
exists a unitary matrix Q such that

Q*AQ = A

where A is diagonal.
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EIGENVALUES

Some important results

4) In general p(A) < ||All,, YA e C™". However p(A) = ||All; if A = A"

5) For a unitary matrix Q,

Mol=1 p(Q) =1 KQ)=1.
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M ATRIX DECOMPOSITIONS

Schur decomposition (triangularization)

A =QRQ"

where Q is unitary and R is upper triangular.
Type:? Any square matrix A € C™",

Eigenvalue decomposition (diagonalization)

A=XAX"?

where A = diag([A1..... A]), X = [va|--|va] and (v}, 1)) are eigenpairs
of A.
Type: A e C™" nondefective (e.g. all normal matrices).

2Type of matrices that can be factorized into this form
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M ATRIX DECOMPOSITIONS
cholesky decomposition

A=LL"
where L is lower triangular.
Type: A € C™" Hermitian and positive definite (PD).
LU decomposition

A=LU
where L is lower triangular and U is upper triangular.
Type: A e C™" but not all square matrices. However with pivoting all
square matrices can be LU-factorized.
Algorithms for LU factorizations are simply modified versions of Gaussian
elimination. E NTNU
Norwegian University of

Science and Technology
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M ATRIX DECOMPOSITIONS

QR decomposition

A=0R
where Q is unitary and R is upper triangular.

Type: A € C™", with possible extensions to rectangular matrices.

Some common algorithms for QR factorization include Gram-Schimdt,
Householder reflections, Givens rotation
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M ATRIX DECOMPOSITIONS
Singular value decomposition

A=UXV"
where U € C™" and V € C™™ are unitary, ¥ € R™™M is diagonal.

Type: This is a more general diagonalization that applies to all matrices
A e C™™M even defective as well as rectangular matrices.
Y is uniquely determined [Trefethen & Baul].

Suppose A € C™™, We have

U—[ul--- e Vml|, AU =0y, j=1,...,p

Un], V = |:Vl

where p = min(n, m). The o € R are called the singular values of A.
The singular values form the diagonal entries of . They are nonnegative
and decreasing, i.e., o1 > 02 > ... > 0p > 0.
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M ATRIX DECOMPOSITIONS

Condition number

Given A € C™", A nonsingular, we define the condtion number « as
follows:

k= k(A) = Al A

where ||| denote a matrix norm. In relation to eigenvalues and singular
values we get the more specifically that

A .
1. k= 2 where Amax = max || and Amin = Min|A|.
min
O max .
2. k= , where omax = maxo and omin = mino.
O min
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M ATRIX DECOMPOSITIONS

Advantages Type

eObtain eigenvalues all square matrices
Schur . ;

ecfficient linear solvers

eObtain eigenvalues nondefective matrices
Diagonalization ecfficient linear solvers (e.g normal)

ecasy computation of matrix

exponentials
OR eObtain eigenvalues all matrices

ecfficient linear solvers inC™" mx>n
Cholesky efficient linear solvers Hermitian & PD
LU (with pivoting) efficient linear solvers all square matrice

eObtain singular values all matrices in C™"
SVD ecfficient linear solvers

ecasy computation of matrix

Norwegian University of
Science and Technology
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SIMILARITY TRANSFORMS

Let X € C™" be invertible. Any map of the form
A XTAX, AecC™

is called a similarity transform.

Two matrices A, B € C™" are said to be similar if there exists and
invertible matrix X € C™" such that B = X "1AX.

Two matrices are similar if and only if they have the same eigenvalues
and eigenvectors.

Observation: The Schur and eigenvalue decompositions are examples of
similarity transforms.
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| TERATIVE METHODS

Given linear system
Ax =Db

Make an initial guess for the solution Xo:
This introduces an error g = X — Xg
We have
Aeg = b—AXo =1Tp

We call ry the residual error.
An iterative method uses X to compute a better solution x; that has a
smaller error and residual error. |.e.

lleall < lleoll

lIra|l < fIroll

whereey =x —xcandrgy =b - Axx = Aex, k=0,1,....
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| TERATIVE METHODS

Iteration 1 Iteration 2 Iteration k+1
init guess X init guess x; init guess Xy

Aeg =g Ae;=n Aex = g

The method is convergent if we have that
llex]l < cklleoll, foreachk =0,1,2,...

where {c} is a nonnegative null sequence (i.e. cx — 0 as k — ).
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| TERATIVE METHODS

e lterative methods are more effecient for solving linear systems than
direct methods.

e Direct methods involving Gaussian elimination or matrix
decompositions spend more computation time and usually requires
more memory storage.
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| TERATIVE METHODS
We shall study the following iterative methods

1) Basic methods:
E.g. Jacobi, Gauss-Seidel, Successive overrelaxation

2) Projection methods:
E.g. steepest descent, Minimum Residual (MRes)

3) Krylov subspace methods:

e Generalized minimum residual (GMRes)
e Lanczos/Anoldi algorithm
e Conjugate gradient algorithm

4) Multigrid methods
5) Eigenvalue algorithms

6) QR factorization algorithms:
E.g.Householder, Gram-Schmidt, Given etc
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