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Motivation

Physical
system

Math model
(e.g. PDE)

Large sparse
linear system

(Ax = b)

Numerical
methods:

esp. Itera-
tive methods

discretization

e.g. FE or FD

NLA

Here x ∈ Rn is the unknown, while A ∈ Rn×n and b ∈ Rn are given.
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Vector norms

Let x =
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(p-norm)

‖x‖∞ = max
1≤j≤n

|xj | (max -norm)
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Vector norms

Inequalities

• ‖x‖ ≥ 0, ∀x ∈ Cn

• ‖αx‖ = |α| ‖x‖ , ∀x ∈ Cn, ∀α ∈ C

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ , ∀x , y ∈ Cn (triangle inequality)

• |(x , y)| ≤ ‖x‖ ‖y‖ , (Cauchy-Schwarz)

where (x , y) denote the inner-product associated to ‖·‖
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Vector norms
Euclidean inner-product

Let x , y ∈ Cn.

Write x =
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yn

























(x , y) = x ∗y =
[

x̄1, . . . , x̄n

]
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...

yn

























=
n
∑

j=1

x̄jyj

where x ∗ denotes the adjoint. In the real case (i.e. when x ∈ Rn) we write
x ∗ as xT (the transpose).
1Observe that ‖x‖2 =

√
x ∗x

1‖x‖2 geometrically represents the length of the vector x
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Matrix norms

Let A = (aij) ∈ Cn×n

Definition (Induced norm)

We define by

‖A‖ = max
x,0
x∈Cn

‖Ax‖
‖x‖

the matrix norm of A induced by a vector norm ‖ · ‖ in Cn.
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Matrix norms
Examples

‖A‖1 = max
x,0
x∈Cn

‖Ax‖1
‖x‖1

= max
1≤j≤n

n
∑

i=1

|aij | (induced 1-nom)

‖A‖∞ = max
x,0
x∈Cn

‖Ax‖∞
‖x‖∞

= max
1≤i≤n

n
∑

j=1

|aij | (induced ∞-norm)

‖A‖2 =
√

ρ(A∗A) =
√

ρ(AA∗) (induced 2-norm)

where ρ() denotes the spectral radius.
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Matrix norms
Frobenius norm

‖A‖F =



















n
∑

i=1

n
∑

j=1

|aij |2


















1/2

=
√

tr(A∗A) =
√

tr(AA∗)

where tr() represents the trace

Inequalities

• ‖A‖ ≥ 0, ∀A ∈ Cn×n and ‖A‖ = 0⇐⇒ A = 0

• ‖αA‖ = |α| ‖A‖ , ∀A ∈ Cn×n, α ∈ C
• ‖A + B‖ ≤ ‖A‖ + ‖B‖ , ∀A,B ∈ Cn×n

• ‖AB‖ ≤ ‖A‖ ‖B‖ ∀A,B ∈ Cn×n

• ‖Ax‖ ≤ ‖A‖ ‖x‖ , ∀A ∈ Cn×n, ∀x ∈ Cn
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Matrix-vector products

Let A = (aij) ∈ Cn×n and x =
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where aj ∈ Cn represent the columns of A.
We have that

Ax = x1a1 + x2a2 + . . .+ xnan

i.e. Ax is a linear combination of columns of A with coefficient vector x .
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Matrix-vector products

Let A = (aij) ∈ Cn×n and x̃ = [x̃1, . . . , x̃n], a row vector.
Now write

A =





































ã1

ã2
...

ãn





































where ãi represents row i.
Then

x̃A = x̃1ã1 + x̃2ã2 + . . .+ x̃nãn

i.e. x̃A is a linear combination of rows of A with coefficient vector x̃ .
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Matrix-vector products

Matrix-matrix products

Let A = (aij) ∈ Cn×n and B = (bij ) ∈ Cn×n,
such that

A =
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and B =
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We have

AB =
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i.e. the matrix-vector product Abj yields column j of the matrix-matrix
product AB.
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Some important classes of matrices

Assume A ∈ Cn×n

Hermitian (symmetric, for real A)

A∗ = A (self-adjoint)

Positive-definite

x ∗Ax > 0, ∀x ∈ C, x , 0

Note: A is called semi-positive-definite if the inequality in not strict (i.e.
x ∗Ax ≥ 0 ∀x , 0).
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Some important classes of matrices
Assume A ∈ Cn×n

Unitary

A∗A = AA∗ = I

The columns of A are are orthogonal with respect to the Euclidean inner
product; i.e. a∗i aj = 0 for i , j . More precisely a∗i aj = δij (orthonormality ).

Q unitary matrix =⇒
∥

∥

∥Qx
∥

∥

∥

2
= ‖x‖2 ∀x ∈ Cn (Q preserves length)

Also
∥

∥

∥Q
∥

∥

∥

2
= 1.

Normal

A∗A = AA∗

Observe that all unitary and Hermitian matrices are normal.
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Some important classes of matrices
Assume A ∈ Cn×n

Regular or nonsingular

det(A) , 0

Sparse

Most of the entries are zeros.
Examples: Diagonal, tri-diagonal, banded etc

Idempotent

A2 = A

Also called a projector
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Some important classes of matrices

Assume A ∈ Cn×n

Triangular

Two types

1) Upper triangular: aij = 0, ∀i > j
i.e. all entries below the leading diagonal are zeros.

2) Lower triangular: aij = 0, ∀i < j
i.e. all entries above the leading diagonal are zeros.
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Eigenvalues

Assume A ∈ Cn×n

Definition (Eigenvalue & Eigenvector)

An eigenvector of A refers to any nonzero vector v ∈ Cn such that

Av = λv

for some scalar λ ∈ C.
The corresponding scalar λ is called an eigenvalue of A.
Thus the pair (v , λ) is called an eigenpair .
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Eigenvalues
Corresponding to each eigenvalue λ is a subspace

Eλ =
{

x ∈ Cn

∣

∣

∣

∣

∣

∣

Ax = λx
}

called the eigenspace. It is the nullspace of the matrix (λI − A)
Eλ is invariant under A (i.e. AEλ ⊂ Eλ). Also dim Eλ ≥ 1.

We have the following definitions:

σ(A) = the set of all eigenvalues of A = spectrum of A

ρ(A) = max
λ∈σ(A)

|λ|, is called the spectral radius of A.

κ = κ(A) =
max
λ∈σ(A)

|λ|

min
λ∈σ(A)

|λ|
, is called the condition number of A.
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Eigenvalues

Characteristic polynomial

pA(z) := det(zI − A), z ∈ C

Roots of pA form the eigenvalues of A;
i.e. λ is an eigenvalue of A if and only if pA(λ) = 0.

By the Fundamental Theorem of Algebra pA has n roots in C;
so we can write

pA(z) = (z − λ1)(z − λ2) · · · (z − λn)
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Eigenvalues
Defective matrix

• The algebraic multiplicity of an eigenvalue λ refers to the number of
times λ occurs as a root of pA.

• The algebraic multiplicity is always greater than or equal to its
geometric multiplicity (namely, the dimension of its eigenspace, i.e.
dim Eλ).

• A simple eigenvalue is one with algebraic multiplicity 1.

Definition (Defective matrix)

An eigenvalue whose algebraic multiplicity exceeds its geometric
multiplicity is called defective.
A defective matrix is one that has a defective eigenvalue.
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Eigenvalues

Defective matrix

Example:

A =





















2 1
2 1

2





















is defective. B =





















2
2

2





















is nondefective.

All diagonal matrices are nondefective.
All diagonalizable matrices are nondefective, and vice-versa.

Question: What do we mean by diagonalizable?
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Eigenvalues
Diagonalizable matrix

Definition (Diagonalizable matrix)

A matrix A ∈ Cn×n is diagonalizable if there exists an invertible matrix X
such that the product

X−1AX = Λ

is a diagonal matrix.

Thus A and Λ are similar matrices.
The diagonal entries of Λ = diag ([λ1, . . . , λn]) are the eigenvalues of A,
while the columns of X =

[

v1

∣

∣

∣ . . .
∣

∣

∣vn

]

are the corresponding eigenvectors.
Check that AX = XΛ =⇒ Avj = λjvj .
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Eigenvalues

Theorem (Gerschgorin)

Let A = (aij) ∈ Cn×n. For each i = 1, . . . , n define ri =
∑n

j=1 aij , and let

Ci =

{

z ∈ C
∣

∣

∣

∣

∣

∣

|z − aii | ≤ ri

}

represent a circular disc of radius ri and center

aii in the complex plane. Then

1) every eigenvalue of A lies in at least one of the discs Ci , i = 1, ..., n;

2) if the union of any k discs forms a connected domain Dk that is disjoint
from the remaining (n − k) discs, then there are precisely k
eigenvalues within Dk .
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Eigenvalues
Some important results

1) All the eigenvalues of a Hermitian matrix are real.

2) Suppose λ1, . . . , λn denote all the eigenvalues of A ∈ Cn×n (including
multiplicities). Then

det(A) =
n

Π
j=1
λj and tr(A) =

n
∑

j=1

λj

where tr(A) =
∑n

i=1 aii is the trace of A.

3) All normal matrices A are unitarily diagonalizable. That is, there is
exists a unitary matrix Q such that

Q∗AQ = Λ

where Λ is diagonal.
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Eigenvalues

Some important results

4) In general ρ(A) ≤ ‖A‖2 , ∀A ∈ Cn×n. However ρ(A) = ‖A‖2 if A = A∗.

5) For a unitary matrix Q,

|λQ | = 1, ρ(Q) = 1, κ(Q) = 1.
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Matrix decompositions
Schur decomposition (triangularization)

A = QRQ∗

where Q is unitary and R is upper triangular.
Type:2 Any square matrix A ∈ Cn×n.

Eigenvalue decomposition (diagonalization)

A = XΛX−1

where Λ = diag([λ1, . . . , λn]), X =
[

v1

∣

∣

∣ · · ·
∣

∣

∣vn

]

and (vj , λj) are eigenpairs
of A.
Type: A ∈ Cn×n nondefective (e.g. all normal matrices).

2Type of matrices that can be factorized into this form
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Matrix decompositions
cholesky decomposition

A = LL∗

where L is lower triangular.

Type: A ∈ Cn×n Hermitian and positive definite (PD).

LU decomposition

A = LU

where L is lower triangular and U is upper triangular.

Type: A ∈ Cn×n but not all square matrices. However with pivoting all
square matrices can be LU-factorized.
Algorithms for LU factorizations are simply modified versions of Gaussian
elimination.
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Matrix decompositions

QR decomposition

A = QR

where Q is unitary and R is upper triangular.

Type: A ∈ Cn×n, with possible extensions to rectangular matrices.
Some common algorithms for QR factorization include Gram-Schimdt,
Householder reflections, Givens rotation
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Matrix decompositions
Singular value decomposition

A = UΣV ∗

where U ∈ Cn×n and V ∈ Cm×m are unitary, Σ ∈ Rn×m is diagonal.

Type: This is a more general diagonalization that applies to all matrices
A ∈ Cn×m, even defective as well as rectangular matrices.
Σ is uniquely determined [Trefethen & Bau].

Suppose A ∈ Cn×m. We have

U =

[

u1

∣

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

∣

un

]

, V =

[

v1

∣

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

∣

vm

]

, Auj = σj vj , j = 1, . . . , p

where p = min(n,m). The σj ∈ R are called the singular values of A.
The singular values form the diagonal entries of Σ. They are nonnegative
and decreasing, i.e., σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.
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Matrix decompositions

Condition number

Given A ∈ Cn×n, A nonsingular, we define the condtion number κ as
follows:

κ = κ(A) ≔ ‖A‖ ‖A−1‖

where ‖·‖ denote a matrix norm. In relation to eigenvalues and singular
values we get the more specifically that

1. κ =
λmax

λmin
, where λmax = max |λ| and λmin = min |λ|.

2. κ =
σmax

σmin
, where σmax = maxσ and σmin = minσ.
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Matrix decompositions

Advantages Type

Schur
•Obtain eigenvalues all square matrices
•efficient linear solvers

Diagonalization
•Obtain eigenvalues nondefective matrices
•efficient linear solvers (e.g normal)
•easy computation of matrix
exponentials

QR
•Obtain eigenvalues all matrices
•efficient linear solvers in Cm×n, m ≥ n

Cholesky efficient linear solvers Hermitian & PD
LU (with pivoting) efficient linear solvers all square matrice

SVD
•Obtain singular values all matrices in Cm×n

•efficient linear solvers
•easy computation of matrix
exponentials
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Similarity transforms

Let X ∈ Cn×n be invertible. Any map of the form

A 7−→ X−1AX , A ∈ Cn×n

is called a similarity transform.

Two matrices A,B ∈ Cn×n are said to be similar if there exists and
invertible matrix X ∈ Cn×n such that B = X−1AX .

Two matrices are similar if and only if they have the same eigenvalues
and eigenvectors.

Observation: The Schur and eigenvalue decompositions are examples of
similarity transforms.
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Iterative methods
Given linear system

Ax = b

Make an initial guess for the solution x0:
This introduces an error e0 = x − x0

We have
Ae0 = b − Ax0 = r0

We call r0 the residual error.
An iterative method uses x0 to compute a better solution x1 that has a
smaller error and residual error. I.e.

‖e1‖ ≤ ‖e0‖
‖r1‖ ≤ ‖r0‖

where ek = x − xk and rk = b − Axk = Aek , k = 0, 1, . . ..
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Iterative methods

Iteration 1
init guess x0

Ae0 = r0

Iteration 2
init guess x1

Ae1 = r1

. . .
Iteration k+1
init guess xk

Aek = rk

· · ·
x0 x1 x2 xk xk+1

The method is convergent if we have that

‖ek‖ ≤ ck‖e0‖, for each k = 0, 1, 2, . . .

where {ck } is a nonnegative null sequence (i.e. ck → 0 as k → ∞).
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Iterative methods

• Iterative methods are more effecient for solving linear systems than
direct methods.

• Direct methods involving Gaussian elimination or matrix
decompositions spend more computation time and usually requires
more memory storage.
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Iterative methods
We shall study the following iterative methods

1) Basic methods:
E.g. Jacobi, Gauss-Seidel, Successive overrelaxation

2) Projection methods:
E.g. steepest descent, Minimum Residual (MRes)

3) Krylov subspace methods:
• Generalized minimum residual (GMRes)
• Lanczos/Anoldi algorithm
• Conjugate gradient algorithm

4) Multigrid methods

5) Eigenvalue algorithms

6) QR factorization algorithms:
E.g.Householder, Gram-Schmidt, Given etc
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