

NUMERICAL LINEAR ALGEBRA

Bawfeh K. Kometa

TMA4205 August 22, 2012

OUTLINE

INTRODUCTION

Motivation Vector norms Matrix norms Matrix-vector products Some important classes of matrices Eigenvalues and Eigenvectors Some matrix decompositions (or factorizations) Similarity transforms

ITERATIVE METHODS

Here $x \in \mathbb{R}^n$ is the unknown, while $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ are given.

VECTOR NORMS

Let
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} \in \mathbb{C}^n$$

$$\|\boldsymbol{x}\|_{1} = \sum_{j=1}^{n} |\boldsymbol{x}_{j}|$$
$$\|\boldsymbol{x}\|_{2} = \left(\sum_{j=1}^{n} |\boldsymbol{x}_{j}|^{2}\right)^{1/2}$$
$$\|\boldsymbol{x}\|_{p} = \left(\sum_{j=1}^{n} |\boldsymbol{x}_{j}|^{p}\right)^{1/p}$$
$$\|\boldsymbol{x}\|_{\infty} = \max_{1 \le j \le n} |\boldsymbol{x}_{j}|$$

(1-norm)

(2-norm)

(p-norm)

Kometa, TMA4205

VECTOR NORMS

Inequalities

- $||x|| \ge 0$, $\forall x \in \mathbb{C}^n$
- $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \quad \forall \mathbf{x} \in \mathbb{C}^n, \, \forall \alpha \in \mathbb{C}$
- $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{C}^n$ (triangle inequality)
- $|(x, y)| \le ||x|| ||y||$, (Cauchy-Schwarz)

where (x, y) denote the inner-product associated to $\|\cdot\|$

Kometa, TMA4205

VECTOR NORMS

Euclidean inner-product

Let
$$x, y \in \mathbb{C}^n$$
.
Write $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$
 $(x, y) = x^*y = \begin{bmatrix} \bar{x}_1, \dots, \bar{x}_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{j=1}^n \bar{x}_j y_j$

where x^* denotes the *adjoint*. In the real case (i.e. when $x \in \mathbb{R}^n$) we write x^* as x^T (the *transpose*). ¹Observe that $||x||_2 = \sqrt{x^*x}$

 $||x||_2$ geometrically represents the length of the vector x

NTNU Norwegian University of Science and Technology

MATRIX NORMS

Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$

DEFINITION (INDUCED NORM)

We define by

$$||A|| = \max_{\substack{x \neq 0 \\ x \in C^n}} \frac{||Ax||}{||x||}$$

the matrix norm of A *induced* by a vector norm $\|\cdot\|$ in \mathbb{C}^n .

MATRIX NORMS

Examples

$$\|A\|_{1} = \max_{\substack{x \neq 0 \\ x \in \mathbb{C}^{n}}} \frac{\|Ax\|_{1}}{\|\|x\|_{1}} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| \qquad \text{(induced 1-nom)}$$
$$\|A\|_{\infty} = \max_{\substack{x \neq 0 \\ x \in \mathbb{C}^{n}}} \frac{\|Ax\|_{\infty}}{\|\|x\|_{\infty}} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \qquad \text{(induced ∞-norm)}$$
$$\|A\|_{2} = \sqrt{\rho(A^{*}A)} = \sqrt{\rho(AA^{*})} \qquad \text{(induced 2-norm)}$$

where $\rho()$ denotes the spectral radius.

www.ntnu.no

MATRIX NORMS

Frobenius norm

$$||A||_{F} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2} = \sqrt{tr(A^{*}A)} = \sqrt{tr(AA^{*})}$$

where *tr*() represents the trace

Inequalities

- $||A|| \ge 0$, $\forall A \in \mathbb{C}^{n \times n}$ and $||A|| = 0 \iff A = 0$
- $\|\alpha A\| = |\alpha| \|A\|$, $\forall A \in \mathbb{C}^{n \times n}$, $\alpha \in \mathbb{C}$
- $||A + B|| \le ||A|| + ||B||$, $\forall A, B \in \mathbb{C}^{n \times n}$
- $||AB|| \leq ||A|| ||B|| \quad \forall A, B \in \mathbb{C}^{n \times n}$
- $||Ax|| \le ||A|| \, ||x||, \quad \forall A \in \mathbb{C}^{n \times n}, \, \forall x \in \mathbb{C}^n$

MATRIX-VECTOR PRODUCTS

Let
$$A = (a_{ij}) \in \mathbb{C}^{n \times n}$$
 and $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{C}^n$.
Write
$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

where $a_j \in \mathbb{C}^n$ represent the *columns* of *A*. We have that

$$A\mathbf{x} = \mathbf{x}_1 \mathbf{a}_1 + \mathbf{x}_2 \mathbf{a}_2 + \ldots + \mathbf{x}_n \mathbf{a}_n$$

i.e. Ax is a linear combination of columns of A with coefficient vector x.

MATRIX-VECTOR PRODUCTS

Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ and $\tilde{x} = [\tilde{x}_1, \dots, \tilde{x}_n]$, a *row* vector. Now write

where \tilde{a}_i represents row *i*. Then

$$\tilde{\mathbf{x}}\mathbf{A} = \tilde{\mathbf{x}}_1 \tilde{\mathbf{a}}_1 + \tilde{\mathbf{x}}_2 \tilde{\mathbf{a}}_2 + \ldots + \tilde{\mathbf{x}}_n \tilde{\mathbf{a}}_n$$

i.e. $\tilde{x}A$ is a *linear combination of rows* of A with coefficient vector \tilde{x} .

MATRIX-VECTOR PRODUCTS

Matrix-matrix products

Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ and $B = (b_{ij}) \in \mathbb{C}^{n \times n}$, such that

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$
 and $B = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix}$.

We have

$$AB = \left[Ab_1 \middle| Ab_2 \middle| \cdots \middle| Ab_n\right]$$

i.e. the matrix-vector product Ab_j yields column *j* of the matrix-matrix product AB.

Assume $A \in \mathbb{C}^{n \times n}$

Hermitian (symmetric, for real A)

 $A^* = A$ (self-adjoint)

Positive-definite

$$x^*Ax > 0, \quad \forall x \in \mathbb{C}, x \neq 0$$

Note: A is called *semi-positive-definite* if the inequality in not strict (i.e. $x^*Ax \ge 0 \quad \forall x \ne 0$).

Assume $A \in \mathbb{C}^{n \times n}$

Unitary

$$A^*A = AA^* = I$$

The columns of *A* are are *orthogonal* with respect to the Euclidean inner product; i.e. $a_i^* a_j = 0$ for $i \neq j$. More precisely $a_i^* a_j = \delta_{ij}$ (*orthonormality*).

Q unitary matrix $\implies ||Qx||_2 = ||x||_2 \quad \forall x \in \mathbb{C}^n$ (Q preserves length) Also $||Q||_2 = 1$.

Normal

 $A^*A = AA^*$

Observe that all unitary and Hermitian matrices are normal.

Assume $A \in \mathbb{C}^{n \times n}$

Regular or nonsingular

 $det(A) \neq 0$

Sparse

Most of the entries are zeros. Examples: Diagonal, tri-diagonal, banded etc

Idempotent

$$A^2 = A$$

Also called a projector

Assume $A \in \mathbb{C}^{n \times n}$

Triangular

Two types

- Upper triangular: a_{ij} = 0, ∀i > j
 i.e. all entries *below* the leading diagonal are zeros.
- Lower triangular: a_{ij} = 0, ∀i < j
 i.e. all entries *above* the leading diagonal are zeros.

Assume $A \in \mathbb{C}^{n \times n}$

DEFINITION (EIGENVALUE & EIGENVECTOR)

An *eigenvector* of A refers to any *nonzero* vector $v \in \mathbb{C}^n$ such that

 $Av = \lambda v$

for some scalar $\lambda \in \mathbb{C}$. The corresponding scalar λ is called an *eigenvalue* of *A*. Thus the pair (v, λ) is called an *eigenpair*.

Corresponding to each eigenvalue λ is a subspace

$$E_{\lambda} = \left\{ \boldsymbol{x} \in \mathbb{C}^n \middle| A\boldsymbol{x} = \lambda \boldsymbol{x} \right\}$$

called the *eigenspace*. It is the nullspace of the matrix $(\lambda I - A) = E_{\lambda}$ is *invariant* under A (i.e. $AE_{\lambda} \subset E_{\lambda}$). Also dim $E_{\lambda} \ge 1$.

We have the following definitions:

$$\sigma(A)$$
 = the set of all eigenvalues of A = spectrum of A
 $\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|$, is called the spectral radius of A .

$$\kappa = \kappa(A) = \frac{\max_{\lambda \in \sigma(A)} |\lambda|}{\min_{\lambda \in \sigma(A)} |\lambda|}, \text{ is called the condition number of A}$$

Characteristic polynomial

$$p_A(z) := det(zI - A), \quad z \in \mathbb{C}$$

Roots of p_A form the eigenvalues of A; i.e. λ is an eigenvalue of A if and only if $p_A(\lambda) = 0$.

By the *Fundamental Theorem of Algebra* p_A has *n* roots in \mathbb{C} ; so we can write

$$p_A(z) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)$$

Defective matrix

- The *algebraic multiplicity* of an eigenvalue λ refers to the number of times λ occurs as a root of p_A .
- The algebraic multiplicity is always greater than or equal to its geometric multiplicity (namely, the dimension of its eigenspace, i.e. dim *E_λ*).
- A simple eigenvalue is one with algebraic multiplicity 1.

DEFINITION (DEFECTIVE MATRIX)

An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is called *defective*.

A *defective matrix* is one that has a defective eigenvalue.

NTNU Norwegian University of Science and Technology

Defective matrix

Example:

$$A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \\ 2 & 2 \end{bmatrix}$$
 is defective.
$$B = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$
 is nondefective.

All diagonal matrices are nondefective.

All diagonalizable matrices are nondefective, and vice-versa.

Question: What do we mean by diagonalizable?

Kometa, TMA4205

Diagonalizable matrix

DEFINITION (DIAGONALIZABLE MATRIX)

A matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if there exists an invertible matrix X such that the product

$$X^{-1}AX = \Lambda$$

is a diagonal matrix.

Thus *A* and Λ are similar matrices. The diagonal entries of $\Lambda = diag([\lambda_1, \dots, \lambda_n])$ are the eigenvalues of *A*, while the columns of $X = [v_1| \dots |v_n]$ are the corresponding eigenvectors. Check that $AX = X\Lambda \Longrightarrow Av_j = \lambda_j v_j$.

THEOREM (GERSCHGORIN)

Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$. For each i = 1, ..., n define $r_i = \sum_{j=1}^n a_{ij}$, and let $C_i = \left\{ z \in \mathbb{C} \mid |z - a_{ii}| \le r_i \right\}$ represent a circular disc of radius r_i and center a_{ii} in the complex plane. Then

- 1) every eigenvalue of A lies in at least one of the discs C_i , i = 1, ..., n;
- if the union of any k discs forms a connected domain D_k that is disjoint from the remaining (n − k) discs, then there are precisely k eigenvalues within D_k.

EIGENVALUES Some important results

- 1) All the eigenvalues of a Hermitian matrix are real.
- Suppose λ₁,..., λ_n denote all the eigenvalues of A ∈ C^{n×n} (including multiplicities). Then

$$det(A) = \prod_{j=1}^{n} \lambda_j$$
 and $tr(A) = \sum_{j=1}^{n} \lambda_j$

where $tr(A) = \sum_{i=1}^{n} a_{ii}$ is the *trace* of *A*.

3) All normal matrices *A* are *unitarily diagonalizable*. That is, there is exists a unitary matrix *Q* such that

$$Q^*AQ = \Lambda$$

where Λ is diagonal.

25

Some important results

- 4) In general $\rho(A) \leq ||A||_2$, $\forall A \in \mathbb{C}^{n \times n}$. However $\rho(A) = ||A||_2$ if $A = A_1^*$.
- 5) For a unitary matrix Q,

$$|\lambda_Q| = 1, \quad \rho(Q) = 1, \quad \kappa(Q) = 1.$$

MATRIX DECOMPOSITIONS

Schur decomposition (triangularization)

 $A = QRQ^*$

where Q is unitary and R is upper triangular. Type:² Any square matrix $A \in \mathbb{C}^{n \times n}$.

Eigenvalue decomposition (diagonalization)

$$A = X \Lambda X^{-1}$$

where $\Lambda = diag([\lambda_1, ..., \lambda_n])$, $X = [v_1 | \cdots | v_n]$ and (v_j, λ_j) are eigenpairs of A.

Type: $A \in \mathbb{C}^{n \times n}$ nondefective (e.g. all normal matrices).

²Type of matrices that can be factorized into this form

NTNU Norwegian University of Science and Technology

MATRIX DECOMPOSITIONS cholesky decomposition

$$A = LL^*$$

where L is lower triangular.

Type: $A \in \mathbb{C}^{n \times n}$ Hermitian and positive definite (PD).

LU decomposition

A = III

where L is lower triangular and U is upper triangular.

Type: $A \in \mathbb{C}^{n \times n}$ but not all square matrices. However with *pivoting* all square matrices can be LU-factorized.

Algorithms for LU factorizations are simply modified versions of Gaussian elimination.

Norwegian University of Science and Technology

MATRIX DECOMPOSITIONS

QR decomposition

A = QR

where Q is unitary and R is upper triangular.

Type: $A \in \mathbb{C}^{n \times n}$, with possible extensions to rectangular matrices. Some common algorithms for QR factorization include Gram-Schimdt, Householder reflections, Givens rotation

MATRIX DECOMPOSITIONS Singular value decomposition

$$A = U \Sigma V^*$$

where $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{m \times m}$ are unitary, $\Sigma \in \mathbb{R}^{n \times m}$ is diagonal.

Type: This is a more general diagonalization that applies to all matrices $A \in \mathbb{C}^{n \times m}$, even defective as well as rectangular matrices. Σ is *uniquely* determined [Trefethen & Bau].

Suppose $A \in \mathbb{C}^{n \times m}$. We have

$$U = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}, \quad V = \begin{bmatrix} v_1 & \cdots & v_m \end{bmatrix}, \quad Au_j = \sigma_j v_j, \quad j = 1, \dots, p$$

where $p = \min(n, m)$. The $\sigma_j \in \mathbb{R}$ are called the *singular values* of *A*. The singular values form the diagonal entries of Σ . They are nonnegative and decreasing, i.e., $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_p \ge 0$.

NTNU Norwegian University of Science and Technology

MATRIX DECOMPOSITIONS

Condition number

Given $A \in \mathbb{C}^{n \times n}$, A nonsingular, we define the condition number κ as follows:

$$\kappa = \kappa(A) \coloneqq \|A\| \, \|A^{-1}\|$$

where $\|\cdot\|$ denote a matrix norm. In relation to eigenvalues and singular values we get the more specifically that

1.
$$\kappa = \frac{\lambda_{\max}}{\lambda_{\min}}$$
, where $\lambda_{\max} = \max |\lambda|$ and $\lambda_{\min} = \min |\lambda|$.
2. $\kappa = \frac{\sigma_{\max}}{\sigma_{\min}}$, where $\sigma_{\max} = \max \sigma$ and $\sigma_{\min} = \min \sigma$.

MATRIX DECOMPOSITIONS

	Advantages	
Schur	Obtain eigenvalues	all square matrices
	•efficient linear solvers	••••
	 Obtain eigenvalues 	nondefective matrices
Diagonalization	 efficient linear solvers 	(e.g normal)
_	 easy computation of matrix 	
	exponentials	
QR	 Obtain eigenvalues 	all matrices
	 efficient linear solvers 	in $\mathbb{C}^{m \times n}$, $m \ge n$
Cholesky	efficient linear solvers	Hermitian & PD
LU (with pivoting)	efficient linear solvers	all square matrice
	 Obtain singular values 	all matrices in $\mathbb{C}^{m \times n}$
SVD	 efficient linear solvers 	
	 easy computation of matrix 	
	exponentials	NTNU Norwegian University of Science and Technology

SIMILARITY TRANSFORMS

Let $X \in \mathbb{C}^{n \times n}$ be invertible. Any map of the form

$$A \longmapsto X^{-1}AX, \quad A \in \mathbb{C}^{n \times n}$$

is called a *similarity transform*.

Two matrices $A, B \in \mathbb{C}^{n \times n}$ are said to be *similar* if there exists and invertible matrix $X \in \mathbb{C}^{n \times n}$ such that $B = X^{-1}AX$.

Two matrices are similar if and only if they have the *same* eigenvalues and eigenvectors.

Observation: The Schur and eigenvalue decompositions are examples of similarity transforms.

Given linear system

Ax = b

Make an *initial guess* for the solution x_0 : This introduces an error $e_0 = x - x_0$ We have

$$Ae_0 = b - Ax_0 = r_0$$

We call r₀ the residual error.

An iterative method uses x_0 to compute a *better* solution x_1 that has a smaller error and residual error. I.e.

$$\|e_1\| \le \|e_0\|$$

 $\|r_1\| \le \|r_0\|$

where $e_k = x - x_k$ and $r_k = b - Ax_k = Ae_k$, k = 0, 1, ...,

$$\begin{array}{c} x_{0} \\ \hline \\ \text{init guess } x_{0} \\ Ae_{0} = r_{0} \end{array} \xrightarrow{x_{1}} \begin{array}{c} \text{Iteration 2} \\ \text{init guess } x_{1} \\ Ae_{1} = r_{1} \end{array} \xrightarrow{x_{2}} \cdots \xrightarrow{x_{k}} \begin{array}{c} \text{Iteration k+1} \\ \text{init guess } x_{k} \\ Ae_{k} = r_{k} \end{array} \xrightarrow{x_{k+1}} \cdots$$

The method is *convergent* if we have that

 $||e_k|| \le c_k ||e_0||$, for each k = 0, 1, 2, ...

where $\{c_k\}$ is a nonnegative null sequence (i.e. $c_k \rightarrow 0$ as $k \rightarrow \infty$).

- Iterative methods are more *effecient* for solving linear systems than direct methods.
- Direct methods involving Gaussian elimination or matrix decompositions spend *more computation time* and usually requires *more memory storage*.

We shall study the following iterative methods

1) Basic methods:

E.g. Jacobi, Gauss-Seidel, Successive overrelaxation

2) Projection methods:

E.g. steepest descent, Minimum Residual (MRes)

- 3) Krylov subspace methods:
 - Generalized minimum residual (GMRes)
 - Lanczos/Anoldi algorithm
 - Conjugate gradient algorithm
- 4) Multigrid methods
- 5) Eigenvalue algorithms
- 6) QR factorization algorithms:
 E.g.Householder, Gram-Schmidt, Given etc

NTNU Norwegian University of Science and Technology