TMA4205 - AUTUMN 2012

DISCRETIZATION OF THE POISSON EQUATION

We shall study the linear system that results from the digertgon of the Pois-
son problem with finite dference methods. We investigate some direct numerical
methods that can used to solve the system. Examples indtedéduss elimina-
tion (or LU factorization), the Cholesky factorization agidgonalization methods.
The latter will require a knowledge of the eigenvalues ageémvectors of the con-
stituent matrix operators.

1. THE 1-DIMENSION PROBLEM

We consider the boundary-value problem (BVP)

d2u .
- m = f in Q (1)
Uu = go on 9Q 2)

For simplicity, we consider homogeneous Dirichlet bougidamditions ¢p = 0)
and choos& = (0,1). That is, we consider the BVP

d?u
- m = f, O<x<1, (3)
u©0) = u(d)=0. 4)
Given the uniform grid below
Xo X1 X2 X3 Xn Xn+1
e ——o—0---- - - -——o
0 1
with nodes (points)
1
i=ih, i=0,... 1 = —
X| I bl I b b n + e n + 1’

we will approximate the unknown functianat then discrete nodesy, . .., X, such
that

ux)=~u, i=1...,n
while
U(xo) = u(0) = uo,  U(Xn+1) = U(1) = Unsa.
We shall also write

f(x)="1f, i=1,...,n
1
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The second derivative if](3) is approximated at each poidéix; by the finite
difference formula

d2 = 2Us . )
d—l; ~ dirt hL;.+u.+1’ i=1...n
X lx
We use this formula to approximatg (3) by
Ui—1 — 2Uj + Uit1 :
- 2 =fi, 1=1...n
This yields a linear system
— Uj_1 + 2Uj — Uj41 = hzfi, i=1,...n, (5)

of n equations im unknowns. In matrix-vector form, we get

2 -1 up f1
-1 2 -1
.. .. .. : = h2 :
1 2 _

1
2
or simply
Au = b, (6)
where
2 -1 U fy
-1 2 -1
-1 2 -1
-1 2 Un fn

We observe thah is symmetric and positive-definite (SPD).

Exercise. Use Gerschgorin’s theorem to obtain bounds for the eigaagabfA.

The systen1(6) can be solved using direct methods based @oiltveing matrix
factorizations

i) Gaussian elimination or LU factorization. Total c&s2n3/3ﬂflops.
ii) Cholesky factorization (sincé is SPD). Total cost n®/3 flops.
iii) Eigenvalue decomposition (diagonalization). Sin&ds normal, the de-

composition is unitary. Oncé has been diagonalized, we only require

~ (4n? + n) flops to solve fow.
Suppose the diagonalization yields

A=QAQ"

lfloating point operations
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where A = diag(1,...,4n) with 4, m = 1,...,n the eigenvalues of, and
Q =[v1] - - - |vn] contains the eigenvectors andusitary. Substituting in[(b) we get
QAQTu=b, (7
and by applying the change of variables
i:=Q'u, b=Q"b
we get the simpler system

3

AU =D,
ie. A4l = Bi, i=1...,n
Thus given thel; andQ we proceed in three simple steps:

Step 1: Computé

b=Qb
Step 2: Computé N
Ui =bj/4, i=1...,n
Step 3. Compute
u = Qd.

Thus the total cost for solving the diagonalized systemggjven by
Cost= 2n? + n + 2 (Step 1+ Step 2+ Step 3)
= (4n” + n) flops
1.1. Diagonalization. The matrixA is tridiagonal and toeplitz. So its eigenvalues
can be obtained in closed fornfas

mr e
Am =2 —2c0S—— = 4sir? ., m=1....n
m n+1 2(n+1)

The eigenvalue problem of the continuous Laplace operatbbi
{ -u" =au in (0,1

uO)=u1)=0

is known to have eigenfunctions, = sintmxforn = 1,2,.... It can be shown
that the eigenvectors of the discrete Laplace operatare given by values of the
continuous eigenfunctions, sampled at the discrete nodes, i=1,...,n. That
is,

Vm1 ©m(X1) sinzmxy

Vi = = : =
Vmn ¢m(Xn) S

satisfiesAvp, = Anwvm, M=1,...,N.
Exercise. Show thatAvy, = Anvm, M = 1,...,n, wherevy, Ay are given as
above.

2see notes on eigenvalues of toeplitz matrices on the cowrbpage
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2. THE 2-DIMENSIONAL PROBLEM
Here we consider the boundary-value problem (BVP)
—-Au = f in Q (8)
u = gp on 9Q 9
whereA denotes the Laplace operator, defineduer u(x, y) by

_d%u d4u
AU.ZW'Fa—yz:UXX"FUW

Again, for simplicity’s sake, we consider homogeneousdbigt boundary condi-
tions @p = 0) and choos& = (0,1) x (0, 1). That is, we consider the BVP

u 0 on 0Q (12)

We will approximateu = u(x, y) on nodes (points) in a uniform rectangular mesh

1

i=ihyj=jh 1,j=0,... 1 =—
XI Iayj J9 |9J ’ 7n+ 9 n+1’

such that
u.y;) ~Uij, i,j=1,...,n
while
u(Xo,Yj) =u(0,yj) =Ugj, j=0,....,n+1
U(Xn+1,Yj) = U(L,Yj) = Unsrj, j=0,...,n+1
u(x,yo) = u(x,0)=Ujo, i=0,...,n+1
u(Xi, Yne1) = U(%,1) = Ujpsz, 1=0,...,n+1

are given from the boundary conditions.
We apply finite diferences to approximate the second derivatives as follows:

Uiy — 2055 + Ujyg
Uxxl(x,y;) ~ 0z

_Ujjo1 - 2055 + Uj
Uyylogy)) = iz

Substituting these formulas in{10) we obtain the lineatesys
4Uij - VUi_j - Uipj - Uijo1 - Ui =PPFij, ij=1....,n (12
whereF; ; = f(x;,Yy;j). The system consists of = n? equations i unknowns.

Example 1. Consider the discretization of the Poisson equation (I0) with f(x,y) =
y — x on the uniform grid given below (with the indicated Dirichlet boundary con-
ditions).
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The Poisson problem in 2D:
f =y-x h =41 BCux0) =

u=3y(l- y2) U(O, y) = O’ U(X’ 1) = 3X(X2_l)’ U(l, y) =

3y(1 -y, Q= (0,1) x (0, 1).

TMA4205 - AUTUMN 2012
y
u=3x(x*-1)
3 14
u=0
1 ]2
u=0

Applying (I2) on each of the interior nodes (square nodes, labelled 1, 2, 3, 4) and
collecting the boundary contributions to the right-hand side we obtain the n® x n?

(withn = 2) linear system

4 -1 -1 O] wu 0
-1 4 0 -1||lw| | 3
-1 0 4 -1||us| | -2
0 -1 -1 4| u 0
y
———@ L 2 L 2 L ]
@ L 2 L 4 L 4 L ] N
r——¢ ! 3 L ® W P E
? S
. 4 . 2 . 4
X

We can use a 5-point stencil (see Figure above) to write daeh ef the equa-

tions in [12) as follows:

Up-Uw—-Ug-Us-Uyn =Fp,

for each grid poinP. (13)
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The resulting matrix system is of the (general) form

Au=b (14)
where
b = h?f + by;
bo = boundary contributions from the left-hand side[of](13)
Meanwhile
[ U1 | [ F11 ]
U‘nl F'nl
u= , f= ,
Uin Fin
[ Um | | P

andA is a block-tridiagonal matrix of the form

S -l 4 -1
-1 s -l -1 4 -1
A= . with S= o
-1 S -l -1 4 -1
-1 s -1 4

and| is then x n identity matrix. SoA is ann? x n? matrix whileu, b are each
n? x 1 vectors.

We observe thah is symmetric and positive-definite (SPD). The system can be
solved using

i) Gaussian elimination or LU factorization. Total ces2N3/3 flops.
ii) Cholesky factorization (sincé is SPD). Total cost N3/3 flops. Exploit-
ing the sparsity oA reduces cost te N2 + N%/2,
iii) Eigenvalue decomposition (diagonalization). We webwihow that this
would lead to a fast Poisson solver, several orders of madmitaster than
the LU or Cholesky factorization approaches.

2.1. Diagonalization and Fast Poisson solversin 2D. From [12) we have that

4U;j - Ui_1j—Uis1j - Uijo1 - Uijpr = P?Fij, i,j=1....,n, (15)
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where the unknowns are stored in thg n matrix U. In the 1D case we obtain the
discrete linear operator
2 -1
-1 2 -1
-1 2 -1
-1 2
The left-hand side of (15) can be split into two as follows:

AU j — Ui—1j — Uisrj — Ujj-1 = Ujja
=(-Uij + 2Uij = Uppj) +(-Uijo1 + 2Ui ) - Ui )

(TUi,j (UT)i,j
Thus we can write (15) in matrix-matrix form as

TU+UT =G:=hF (16)

This matrix-matrix form has an advantage over the matrigtaweform [14) in terms
of the storage requirements. In the latter we n@@d?) = O(n*) space in memory
to store the matrixA, and additionalD(N) = O(n?) to store the right-hand side
[Recall that the dimension @is NxN, whereN = n?]. This makes a total memory
space requirement of ordén*+n?). On the other hand, the representatioriin (16)
only requiresO(3n?) memory space to store the thres n matricesU, T, G.

From Sectioii 1, we know that the tridiagonal maffixs unitarily diagonaliz-
able such that

T=QAQ", A=dag(ls,....4,), Q' Q=1

sinceT is symmetric (hence normal). The eigenvalugs. .., A, are real (sincd
is symmetric) and positive (SinCE is positive-definite). We have also explained
how to explicitly compute andA.

Substituting the factorization df into (18) we obtain

QAQ'U +UQAQ" =G.
Pre-multiplying and post-multiplying both sides By andQ respectively, yields

AQ'UQ+Q'UQA =Q'GQ

U U G
ie. L .
AU +UA =G
- /liLNJi,j-I-LNJi,j/lj:GNi,j
~ Gij .
= ij=—— L]=1...,n
Ai + 4

This can be done in three steps (giverand Q)
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Step 1. Compute 5
G=Q'GQ.

Cost= 2n® + 2n® (2 matrix-matrix products).

Step 2: Compute the entries Bfusing
~. o G~|,]

b Ai + 4 ’

Cost= n? (adds)+ n? (divides) = 2n? flops.

i,j=1,...,n.

Step 3: Computd) using N
U=0QuQ".

Cost= 2n3 + 28 flops (2 matrix-matrix products).

Total cost= 4n+2n+4n3 = 8n3+2n? flops. Using FFT, the cost of matrix-matrix
products reduces @(n? log n), with n?logn < n® for largen. This brings the total
cost down tad(2n? + n?logn). The overall cost of this three-step procedure is only
aboutO(N®/2) which far lower tharO(N®) the cost for Gaussian elimination.

We shall see in subsequent lectures that iterative methavts dgreater advan-
tages over the direct methods mentioned here, both in teomgutational speed

and memory storage.
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