
TMA4205 - AUTUMN 2012

DISCRETIZATION OF THE POISSON EQUATION

We shall study the linear system that results from the discretization of the Pois-
son problem with finite difference methods. We investigate some direct numerical
methods that can used to solve the system. Examples include the Gauss elimina-
tion (or LU factorization), the Cholesky factorization anddiagonalization methods.
The latter will require a knowledge of the eigenvalues and eigenvectors of the con-
stituent matrix operators.

1. The 1-dimension problem

We consider the boundary-value problem (BVP)

−
d2u

d x2
= f in Ω (1)

u = gD on ∂Ω (2)

For simplicity, we consider homogeneous Dirichlet boundary conditions (gD = 0)
and chooseΩ = (0, 1). That is, we consider the BVP

−
d2u

d x2
= f , 0 < x < 1, (3)

u(0) = u(1) = 0. (4)

Given the uniform grid below

x0 x1 x2 x3 xn xn+1

0 1

with nodes (points)

xi = ih, i = 0, . . . , n + 1, h =
1

n + 1
,

we will approximate the unknown functionu at then discrete nodesx1, . . . , xn such
that

u(xi) ≈ ui, i = 1, . . . , n

while

u(x0) = u(0) = u0, u(xn+1) = u(1) = un+1.

We shall also write

f (xi) = fi, i = 1, . . . , n.
1
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The second derivative in (3) is approximated at each point (node) xi by the finite
difference formula

d2u

d x2

∣
∣
∣
∣
∣
∣
xi

≈
ui−1 − 2ui + ui+1

h2
, i = 1, . . . n.

We use this formula to approximate (3) by

−
ui−1 − 2ui + ui+1

h2
= fi, i = 1, . . . n.

This yields a linear system

− ui−1 + 2ui − ui+1 = h2fi, i = 1, . . . n, (5)

of n equations inn unknowns. In matrix-vector form, we get




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2









u1

...

un





= h2





f1

...

f2





or simply
Au = b, (6)

where

A =





2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2





, u =





u1

...

un





, b = h2





f1

...

fn





.

We observe thatA is symmetric and positive-definite (SPD).

Exercise. Use Gerschgorin’s theorem to obtain bounds for the eigenvalues ofA.

The system (6) can be solved using direct methods based on thefollowing matrix
factorizations

i) Gaussian elimination or LU factorization. Total cost≈ 2n3/3 1flops.
ii) Cholesky factorization (sinceA is SPD). Total cost≈ n3/3 flops.
iii) Eigenvalue decomposition (diagonalization). SinceA is normal, the de-

composition is unitary. OnceA has been diagonalized, we only require
≈ (4n2

+ n) flops to solve foru.

Suppose the diagonalization yields

A = QΛQT

1floating point operations
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whereΛ = diag(λ1, . . . , λn) with λm, m = 1, . . . , n the eigenvalues ofA, and
Q = [v1| · · · |vn] contains the eigenvectors and isunitary. Substituting in (6) we get

QΛQT u = b, (7)

and by applying the change of variables

ũ ≔ QT u, b̃ ≔ QT b

we get the simpler system

Λũ = b̃,

i.e. λiũi = b̃i, i = 1, . . . , n.

Thus given theλi andQ we proceed in three simple steps:

Step 1: Computẽb
b̃ = QT b.

Step 2: Computẽu
ũi = b̃i/λi, i = 1, . . . , n.

Step 3: Computeu
u = Qũ.

Thus the total cost for solving the diagonalized system (7) is given by

Cost= 2n2
+ n + 2n2 (Step 1+ Step 2+ Step 3)

= (4n2
+ n) flops.

1.1. Diagonalization. The matrixA is tridiagonal and toeplitz. So its eigenvalues
can be obtained in closed form as2

λm = 2− 2 cos
mπ

n + 1
= 4 sin2 mπ

2(n + 1)
, m = 1, . . . , n.

The eigenvalue problem of the continuous Laplace operator in 1D
{
− u′′ = λu in (0, 1)

u(0) = u(1) = 0

is known to have eigenfunctionsϕm = sinπmx for n = 1, 2, . . . . It can be shown
that the eigenvectors of the discrete Laplace operatorA are given by values of the
continuous eigenfunctionsϕm sampled at the discrete nodesxi, i = 1, . . . , n. That
is,

vm =





vm,1
...

vm,n





=





ϕm(x1)
...

ϕm(xn)





=





sinπmx1
...

sinπmxn





satisfiesAvm = λmvm, m = 1, . . . , n.

Exercise. Show thatAvm = λmvm, m = 1, . . . , n, where vm, λm are given as
above.

2see notes on eigenvalues of toeplitz matrices on the course webpage
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2. The 2-dimensional problem

Here we consider the boundary-value problem (BVP)

− ∆u = f in Ω (8)

u = gD on ∂Ω (9)

where∆ denotes the Laplace operator, defined foru = u(x, y) by

∆u ≔
∂2u

∂x2
+
∂2u

∂y2
= uxx + uyy

Again, for simplicity’s sake, we consider homogeneous Dirichlet boundary condi-
tions (gD = 0) and chooseΩ = (0, 1)× (0, 1). That is, we consider the BVP

− (uxx + uyy) = f in Ω (10)

u = 0 on ∂Ω (11)

We will approximateu = u(x, y) on nodes (points) in a uniform rectangular mesh

xi = ih, y j = jh, i, j = 0, . . . , n + 1, h =
1

n + 1
,

such that

u(xi, y j) ≈ Ui, j, i, j = 1, . . . , n

while
u(x0, y j) = u(0, y j) = U0, j, j = 0, . . . , n + 1

u(xn+1, y j) = u(1, y j) = Un+1, j, j = 0, . . . , n + 1

u(xi, y0) = u(xi, 0) = Ui,0, i = 0, . . . , n + 1

u(xi, yn+1) = u(xi, 1) = Ui,n+1, i = 0, . . . , n + 1

are given from the boundary conditions.
We apply finite differences to approximate the second derivatives as follows:

uxx |(xi ,y j) ≈
Ui−1, j − 2Ui, j + Ui+1, j

h2

uyy |(xi ,y j) ≈
Ui, j−1 − 2Ui, j + Ui, j+1

h2

Substituting these formulas in (10) we obtain the linear system

4Ui, j − Ui−1, j − Ui+1, j − Ui, j−1 − Ui, j+1 = h2Fi, j, i, j = 1, . . . , n (12)

whereFi, j = f (xi, y j). The system consists ofN = n2 equations inN unknowns.

Example 1. Consider the discretization of the Poisson equation (10) with f (x, y) =
y − x on the uniform grid given below (with the indicated Dirichlet boundary con-
ditions).
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x

y

1 2

3 4

u = 0

u = 0

u = 3y(1− y2)

u = 3x(x2 − 1)

The Poisson problem in 2D:
f = y − x, h = 1

3; BC: u(x, 0) =
u(0, y) = 0, u(x, 1) = 3x(x2−1), u(1, y) =
3y(1− y2), Ω = (0, 1)× (0, 1).

Applying (12) on each of the interior nodes (square nodes, labelled 1, 2, 3, 4) and
collecting the boundary contributions to the right-hand side we obtain the n2 × n2

(with n = 2) linear system





4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4









u1

u2

u3

u4





=





0
2
3

−2
3
0





.

x

y

EW

S

N

P

We can use a 5-point stencil (see Figure above) to write down each of the equa-
tions in (12) as follows:

UP − UW − UE − US − UN = FP, for each grid pointP. (13)
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The resulting matrix system is of the (general) form

Au = b (14)

where

b = h2f + b0;

b0 = boundary contributions from the left-hand side of (13).

Meanwhile

u =





U11
...

Un1

...

U1n
...

Unn





, f =





F11
...

Fn1

...

F1n
...

Fnn





,

andA is a block-tridiagonal matrix of the form

A =





S −I
−I S −I

. . .
. . .

. . .

−I S −I
−I S





, with S =





4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4





and I is then × n identity matrix. SoA is ann2 × n2 matrix while u, b are each
n2 × 1 vectors.

We observe thatA is symmetric and positive-definite (SPD). The system can be
solved using

i) Gaussian elimination or LU factorization. Total cost≈ 2N3/3 flops.
ii) Cholesky factorization (sinceA is SPD). Total cost≈ N3/3 flops. Exploit-

ing the sparsity ofA reduces cost to≈ N2
+ N3/2.

iii) Eigenvalue decomposition (diagonalization). We would show that this
would lead to a fast Poisson solver, several orders of magnitude faster than
the LU or Cholesky factorization approaches.

2.1. Diagonalization and Fast Poisson solvers in 2D. From (12) we have that

4Ui, j − Ui−1, j − Ui+1, j − Ui, j−1 − Ui, j+1 = h2Fi, j, i, j = 1, . . . , n, (15)
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where the unknowns are stored in then × n matrix U. In the 1D case we obtain the
discrete linear operator

T =





2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2





.

The left-hand side of (15) can be split into two as follows:

4Ui, j − Ui−1, j − Ui+1, j − Ui, j−1 − Ui, j+1

=

(

−Ui−1, j + 2Ui, j − Ui+1, j

)

︸                           ︷︷                           ︸

(TU)i, j

+

(

−Ui, j−1 + 2Ui, j − Ui, j+1

)

︸                           ︷︷                           ︸

(UT )i, j

Thus we can write (15) in matrix-matrix form as

TU + UT = G := h2F (16)

This matrix-matrix form has an advantage over the matrix-vector form (14) in terms
of the storage requirements. In the latter we needO(N2) = O(n4) space in memory
to store the matrixA, and additionalO(N) = O(n2) to store the right-hand sideb.
[Recall that the dimension ofA is N×N,whereN = n2]. This makes a total memory
space requirement of orderO(n4

+n2). On the other hand, the representation in (16)
only requiresO(3n2) memory space to store the threen × n matricesU, T, G.

From Section 1, we know that the tridiagonal matrixT is unitarily diagonaliz-
able such that

T = QΛQT , Λ = diag(λ1, . . . , λn), QT Q = I

sinceT is symmetric (hence normal). The eigenvaluesλ1, . . . , λn are real (sinceT
is symmetric) and positive (sinceT is positive-definite). We have also explained
how to explicitly computeQ andΛ.

Substituting the factorization ofT into (16) we obtain

QΛQT U + UQΛQT
= G.

Pre-multiplying and post-multiplying both sides byQT andQ respectively, yields

ΛQT UQ
︸ ︷︷ ︸

Ũ

+QT UQ
︸ ︷︷ ︸

Ũ

Λ = QT GQ
︸ ︷︷ ︸

G̃

i.e.
ΛŨ + ŨΛ = G̃

=⇒ λiŨi, j + Ũi, jλ j = G̃i, j

=⇒ Ũi, j =
G̃i, j

λi + λ j
, i, j = 1, . . . , n.

This can be done in three steps (givenλi andQ)
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Step 1: Compute
G̃ = QT GQ.

Cost= 2n3
+ 2n3 (2 matrix-matrix products).

Step 2: Compute the entries ofŨ using

Ũi, j =
G̃i, j

λi + λ j
, i, j = 1, . . . , n.

Cost= n2 (adds)+ n2 (divides)= 2n2 flops.

Step 3: ComputeU using
U = QŨQT .

Cost= 2n3
+ 2n3 flops (2 matrix-matrix products).

Total cost= 4n3
+2n2

+4n3
= 8n3

+2n2 flops. Using FFT, the cost of matrix-matrix
products reduces toO(n2 logn), with n2 logn≪ n3 for largen. This brings the total
cost down toO(2n2

+n2 logn). The overall cost of this three-step procedure is only
aboutO(N3/2) which far lower thanO(N3) the cost for Gaussian elimination.

We shall see in subsequent lectures that iterative methods have greater advan-
tages over the direct methods mentioned here, both in terms computational speed
and memory storage.
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