TMA4205 - Autumn 2012

Exam - Suggested solutions

Problem 1

The matrix

17.12.2012
2 0 0 1
003 -1 1
A=10 1 2 o0 e
11 0 2

is unitarily similar to an upper Hessenberg matrix H.
This means

A=QHQT,

where @ is a unitary matrix (ie. QTQ = QQT =1I).

a)

We observe that A is symmetric. Therefore, since H = QT AQ, we have that
HT =QTATQ =Q"AQ = H.

This implies that H is both symmetric and upper Hessenberg.
Thus, H must be tridiagonal.

The matrices A and H have the same eigenvalues (by similarity). Also we note the the
eigenvalues of A are all real since A = A”. The matrix is diagonally dominant, but not
strictly so. By Gerschgorin’s theorem, all the eigenvalues lie in the union of the intervals
[1,3], [1,5], [0,4]. This shows that the eigenvalues of A are all nonnegative. Since A is
suppose to be nonsingular, no eigenvalue can be zero. Therefore all the eigenvalues of
A are positive. This means all the eigenvalues of H are positive (by similarity). Hence

H is SPD.

Suppose we were to compute H, we will need to apply two Householder reflectors Q1 =
I— 21)11)1T and Qo = I — 2@205 from the left and right of the matrix A. This is done in
the following order:

A g %o ey, 2% g

We can choose

= , from the first column of A.
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We have

2 -1 0 0
-1 2 0 1
Hy = Q1AQ1 = 0 0 2 1
0 1 1 3

We now choose

Vg = , from the second column of H;.
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The result is
H = QH1Q2 = Q2Q14Q1Q2 = QT AQ
giving
Q = Q1Q:2.

To compute @) we only need to compute the columns:

Q = [Qe1]|Qea|Qes|Qey]

where ey, k = 1,2,3,4 are the standard Euclidean unit vectors in R*. Since in the
matrix-vector product @;x only entries of x from row j + 1 downwards are altered, we
must have that

Qjek = €k, V] > k.

So
Qer = Q1Q2e1 = eq,
Qex = Q1Q2e2 = Qe2,

Qesz = Q1Q2e3,
Qes = Q1Q2¢4.

The computations are done as follows:

e Compute Qes = Qqeo:

Qleg = €9 — 21)1(?){62)
0 0 0
R O
B ) 0 - 0
0 1 -1



e Compute Qes = Q1Q)qe3:

Q263 — €3 — 2?}2 (vaeg)
0 0 0
o] [0]_ 0 L
|1 1|7 o | T%
0 1 -1
Qesz = Qw = w — 2v; (vl w)
0 0 0
_ 0 n 1] |1
0 o] O
-1 1 0
e Compute Qeqy = Q1Q2e4:
Qoes = €4 — 2v2(v2Te4)
0 0 0
(o _|0]_ 0 o
| o SR A IS T
1 1 0
Qes = Qrw = w — 2v; (v w)
0 0
0 0
= _ +0=1 1
0 0
Observe that no matrix-vector product is involved in the calculations!
Hence
1 0 0 O
0 0 1 0
@= 0 0 0 -1
0 -1 0 O
Problem 2
a) We consider a matrix of the form
A=1T+ usS,

where p is a scalar and S is skew-symmetric.
i) For any vector x # 0 of compatible dimension we have that
el Az = 272 + pa’ Sz
Since ST = -8,
7Sz = (27 52)" = —2T Sz = TSz = 0.

This implies that 27 Az > 0 for any scalar p. Thus A is SPD.



ii) The Anoldi process with this matrix yields the upper Hessenberg matrix

H,, =VZIav,
=VIV,, +uVEsv,
= Iy + pVISV,. (2)

The second term in (2) is skew-symmetric, since
= WVIsv,) ' =vIsTv, = -vIsv,. (3)

Since both terms in (2) are also upper Hessenberg, and the diagonal entries of a
skew-symmmetric matrix are all zeros, H,, must have the tridiagonal form

1 —n
n 1 —n3
H,, = o
Nm—1 1 —Mm
Im 1

b) We have the linear system Az = b where A is SPD, and we consider an orthogonal
projection method for which the search and constraint spaces are given by £ = K =
span {rg, Arg} where 1o = b — Az is the current residual. The solution update & would
satisfy that & — x¢ € K. That means,

I =xo+ arg+ BArg.
The corresponding residual vector is given by
F=b— A% = ro— adArg — BA?r.

Also

In the A norm we have that

Il = (&.€)a
= (é,e9 —arg — fAry)a
= (é,e0)a — (F,arg + BArg), since Aé = 7
= (€,e0) 4, since 7 1L L
= (&,70), since Aeg = rg

eg — arg — BArg, ro)
A rg,m0) — alro, 7o) — B(Arg, o)
1 (ro,70) (Arg,ro)

A~ 1— —
ro, o) a(A_lroﬂ”o) (A=trg, 7o)

|
—~ A~ N N N N N

The result follows, since (A~ 1rg, 7o) = ||eo |-

4



To determine the values of the constants «, 8 we use the orthogonality condition:

7 L L =span{rg, Aro}

(7"0 — aArg — ﬂAQTO,ro) =0,
(7"0 — aArg — ﬂAQTO,Aro) =0

CY(AT’O, TO) + 5(1427’0, TO) = (TOa TO)a
o Arg, Arg) + B(A%rg, Arg) = (Arg,ro).

Solving this 2 x 2 system we get

[(A%rq, Aro)(ro, 7o) — (Aro, Aro)(Aro,0)] ,

o =

A= |~

,8 = [(A?“o,?“o)Q — (A?“Q, A?“o)(?“o,?“o)] s

where

g = (A27°0, ATo)(ATQ,TQ) — (A?“Q, AT0)2.

A
Now we can determine a lower bound for the term /3 (_7007’7“0).
(A 1T0’T0)
We write
(Aro,ro) _ (Aro,m0) (Arg,r9)* — (Arg, Arg)(ro, 7o)
(Ailro, 7“0) (Ailro, 7“0) (A27°0, A?“Q)(A?“(), 7“0) — (A?“o, ATo)Q
__(rooro)  (ro,m0) (Rg - Rl>
(A_lro,ro) (A?“o,?“o) RQ — R% ’
where
Ro _ (A?“o, 7“0)
(TO’ TO)
(A’I“(), AT‘()) (AQ’I“(), ’I“())
Rl p— p—
(TO, TO) (TOa TO)

Ry — (A%ro, Arg) _ (Aro,Aro) (Aro,70)  (r0,70)
(Aro,m0) (Arg, Arg)  (ro,m0) (Arg,70)

The following inequalities (based on Rayleigh quotients of A and A? can be easily verified:
)\min < RO < )\maX7
Amin < B <A

max?
3 3
)‘min < R2 < Amax

max min

Combining these inequalities together with Kantorovich inequality, we get that

(AT’(), TO) 4 A max Amin ) )‘r2nin - )‘r2nax > 4)\max)\12nin Amin — Amax
(AilTO, TO) (Amax + Amin)Q i\\f};& — )\4 - )‘3 - >\5 )‘min + )‘max .

max min

v

min min



Problem 3

From the discretization of the Poisson problem we have Az = b where A = tridiag(—1, 2, —1).
The SSOR method can be re-written compactly as

Tpr1 = (D —wF)  wE + (1 —wD)] (D —wE) ' [wF + (1 —wD)] 21, + Ryb,

where R,, controls remaining terms. This gives the iteration matrix as

a)

b)

Go=(D—wF) ' {wE+ (1 —-wD)|(D —wE) ' [wF + (1 —wD)].
I 11
We use the splitting A = D — E— F to eliminate F' from (I), and E from (II). We obtain
Go = (D —wF) ' [(D—~wF) —wA] (D —wE) ' (D — wE) — wA]

=[I —w(D-wF) "A] [I —w(D —wE) 4]
=TI —wD—-wF)'A—w(D -wE) *"A+w*(D - wF)'AD -wE) A
=T —w(D—-wF) ' [(D-wE)+ (D —wF) —wA] (D -wE)'A
=T —w?2-w)(D-wF)"'D(D—-wE) A,

Given xj41 = M~ 'Nxy, + M~ 1ry, with A = M — N the iteration matrix is given by
G=M'N=I-M"1A
So from the expression for G, it follows that the preconditioner is given by

M, = (w2 —w)(D —wF)"'D(D —wE)™) ™!

== 1_ » (D —wE)D™Y(D - wF).

For the given matrix, we observe that F = ET. This implies that M, is symmetric.
Also 1/(w(2 —w)) > 0 since w € (0,2). Moreover

(D —wE)D™ Y (D —wF)z,z) = (D"YD — wET)2,(D —wET)z) >0, forall z #0,

since both D~! and (D—wET) are nonsingular (as triangular matrices with determinants
given by det(D~!) # 0).

This proves that M, as well as M ! are SPD.

Let
2an? + A 11 1
_ M_lA _ min _ _t
where v = )\Zi“, a= (21‘;)2. Then the condition number is minimized when f’(w) = 0.
fllw)=0
4
1 1
—_—— —_— 0
2T (2 —w)? ’

—v(2 — w)2 +w? =0,

W= Vi@ - W)l + VA2 - w)] =0



For w € (0,2) we must have
w— /72 —-w)=0.
Thus

2/
1+

Wopt =

S

For this value of w the condition number is given by

1 1 n n?
Flwopt) = 5+ V7 2+281n% L o>

Problem 4
Let

-1 0 1

1 -1 0

4= 0 1 -1 (4)
1 0 1

a) For the convergence of conjugate gradient iterations for the normal equation A7 Az =
ATb we only require that AT A be SPD. The normal matrix is clearly symmetric. This
means its eigenvalues are real. Also

2T AT Az = (Az)T (Az) >0, Va #0,

since A is full-rank (by inspection we observe that the columns of A are linearly inde-
pendent.

b) First we compute

-1 1 0 1 _11 _01 (1) 3 -1 0
ATA=10 -1 1 0|, | |=|1 2 -1
e T B I 0 -1 3

The condition number of AT A can be obtained by

)\max
I{Q(A) = N .

To compute the eigenvalues of AT A we can use the characteristic equation (since this is
a small matrix dim < 5).

B=NE2-NE-)-1+1[-B-N]=
B=NMA-XN1-X



The eigenvalues are A = 1, 3, 4. This also shows that AT A is SPD, since all its eigen-
values are positive. We obtain

>

max 4
Ra(A) = TE% = - =4,

)\min
Applying a diagonal preconditioner to the normal matrix, yields

1 - 0
1 —
1

L=

N —
N~

1
3

This contracts the Gerschgorin’s discs (intervals in this case) into [1/2,3/2], [2/3,4/3],
which shows condition now has an upper bound given by

e 3/2
pr?ac < / = 3.
A 1/2

This smaller than k(AT A) = 4. Thus the diagonal precondition gives some improvement.

c) If the SVD for A is given by A = ULV, then
ATA=vs2vT,
This shows that AT A and %2 are similar. So the singular values of A must satisfy
0'%24, 03:3 ngl,
giving
o1 =2, 02:\/5, o3 = 1.

d) We compute the 1-, 2-, co- and Frobenius-norms of A as follows:

4

def
140 g, 3 sl = e (3,2,3) =3
1=
def >
€
14]l6 = 1@35421 jaij| = max{2,2,2,2} = 2.
j:

HAH2 = Omax = 01 = 2.

Al = \/o? + 03+ 03 = VB =2V2.



