TMA4205 - Autumn 2012 Exam - Suggested solutions

17.12.2012

Problem 1

The matrix

$$A = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & -1 & 1 \\ 0 & -1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}$$
(1)

is unitarily similar to an upper Hessenberg matrix H. This means

$$A = QHQ^T$$

where Q is a unitary matrix (i.e. $Q^T Q = Q Q^T = I$).

a) We observe that A is symmetric. Therefore, since $H = Q^T A Q$, we have that

$$H^T = Q^T A^T Q = Q^T A Q = H.$$

This implies that H is both symmetric and upper Hessenberg. Thus, H must be tridiagonal.

- b) The matrices A and H have the same eigenvalues (by similarity). Also we note the the eigenvalues of A are all real since $A = A^T$. The matrix is diagonally dominant, but not strictly so. By Gerschgorin's theorem, all the eigenvalues lie in the union of the intervals [1,3], [1,5], [0,4]. This shows that the eigenvalues of A are all nonnegative. Since A is suppose to be nonsingular, no eigenvalue can be zero. Therefore all the eigenvalues of A are positive. This means all the eigenvalues of H are positive (by similarity). Hence H is SPD.
- c) Suppose we were to compute H, we will need to apply two Householder reflectors $Q_1 = I 2v_1v_1^T$ and $Q_2 = I 2v_2v_2^T$ from the left and right of the matrix A. This is done in the following order:

$$A \xrightarrow{AQ_1} A_1 \xrightarrow{A_1Q_1} H_1 \xrightarrow{Q_2H_1} A_2 \xrightarrow{A_2Q_2} H.$$

We can choose

$$v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}$$
, from the first column of A

We have

$$H_1 = Q_1 A Q_1 = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

We now choose

$$v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$
, from the second column of H_1 .

The result is

$$H = Q_2 H_1 Q_2 = Q_2 Q_1 A Q_1 Q_2 = Q^T A Q$$

giving

$$Q = Q_1 Q_2.$$

To compute Q we only need to compute the columns:

$$Q = \left[Qe_1|Qe_2|Qe_3|Qe_4\right],$$

where e_k , k = 1, 2, 3, 4 are the standard Euclidean unit vectors in \mathbb{R}^4 . Since in the matrix-vector product $Q_j x$ only entries of x from row j + 1 downwards are altered, we must have that

 $Q_j e_k = e_k, \quad \forall j \ge k.$

 So

$$Qe_1 = Q_1Q_2e_1 = e_1,$$

 $Qe_2 = Q_1Q_2e_2 = Q_1e_2,$
 $Qe_3 = Q_1Q_2e_3,$
 $Qe_4 = Q_1Q_2e_4.$

The computations are done as follows:

• Compute $Qe_2 = Q_1e_2$:

$$Q_{1}e_{2} = e_{2} - 2v_{1}(v_{1}^{T}e_{2})$$
$$= \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} - \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\-1 \end{pmatrix}.$$

• Compute $Qe_3 = Q_1Q_2e_3$:

$$Q_{2}e_{3} = e_{3} - 2v_{2}(v_{2}^{T}e_{3})$$

$$= \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} - \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\-1 \end{pmatrix} =: w.$$

$$Qe_{3} = Q_{1}w = w - 2v_{1}(v_{1}^{T}w)$$

$$= \begin{pmatrix} 0\\0\\0\\-1 \end{pmatrix} + \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}.$$

• Compute
$$Qe_4 = Q_1Q_2e_4$$
:

$$Q_{2}e_{4} = e_{4} - 2v_{2}(v_{2}^{T}e_{4})$$

$$= \begin{pmatrix} 0\\0\\0\\1\\1 \end{pmatrix} - \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\-1\\0 \end{pmatrix} =: w.$$

$$Qe_{4} = Q_{1}w = w - 2v_{1}(v_{1}^{T}w)$$

$$= \begin{pmatrix} 0\\0\\-1\\0 \end{pmatrix} + 0 = \begin{pmatrix} 0\\0\\-1\\0 \end{pmatrix}.$$

Observe that no matrix-vector product is involved in the calculations! Hence

$$Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

Problem 2

a) We consider a matrix of the form

$$A = I + \mu S,$$

where μ is a scalar and S is skew-symmetric.

i) For any vector $x \neq 0$ of compatible dimension we have that

$$x^T A x = x^T x + \mu x^T S x.$$

Since $S^T = -S$,

$$x^T S x = (x^T S x)^T = -x^T S x \Longrightarrow x^T S x = 0.$$

This implies that $x^T A x > 0$ for any scalar μ . Thus A is SPD.

ii) The Anoldi process with this matrix yields the upper Hessenberg matrix

$$H_m = V_m^T A V_m$$

= $V_m^T V_m + \mu V_m^T S V_m$
= $I_m + \mu V_m^T S V_m$. (2)

The second term in (2) is skew-symmetric, since

$$= (V_m^T S V_m)^T = V_m^T S^T V_m = -V_m^T S V_m.$$
 (3)

Since both terms in (2) are also upper Hessenberg, and the diagonal entries of a skew-symmetric matrix are all zeros, H_m must have the tridiagonal form

$$H_m = \begin{bmatrix} 1 & -\eta_2 & & & \\ \eta_2 & 1 & -\eta_3 & & \\ & & \ddots & & \\ & & \eta_{m-1} & 1 & -\eta_m \\ & & & & \eta_m & 1 \end{bmatrix}.$$

b) We have the linear system Ax = b where A is SPD, and we consider an orthogonal projection method for which the search and constraint spaces are given by $\mathcal{L} = \mathcal{K} =$ span $\{r_0, Ar_0\}$ where $r_0 = b - Ax_0$ is the current residual. The solution update \tilde{x} would satisfy that $\tilde{x} - x_0 \in \mathcal{K}$. That means,

$$\tilde{x} = x_0 + \alpha r_0 + \beta A r_0.$$

The corresponding residual vector is given by

$$\tilde{r} = b - A\tilde{x} = r_0 - \alpha A r_0 - \beta A^2 r_0.$$

Also

$$\tilde{e} = x - \tilde{x} = e_0 - \alpha r_0 - \beta A r_0.$$

In the A norm we have that

$$\begin{split} \|\tilde{e}\|_{A}^{2} &= (\tilde{e}, \tilde{e})_{A} \\ &= (\tilde{e}, e_{0} - \alpha r_{0} - \beta A r_{0})_{A} \\ &= (\tilde{e}, e_{0})_{A} - (\tilde{r}, \alpha r_{0} + \beta A r_{0}), \qquad \text{since } A\tilde{e} = \tilde{r} \\ &= (\tilde{e}, e_{0})_{A}, \qquad \text{since } \tilde{r} \perp \mathcal{L} \\ &= (\tilde{e}, r_{0}), \qquad \text{since } Ar_{0} - r_{0} \\ &= (e_{0} - \alpha r_{0} - \beta A r_{0}, r_{0}) \\ &= (A^{-1}r_{0}, r_{0}) - \alpha(r_{0}, r_{0}) - \beta(Ar_{0}, r_{0}) \\ &= (A^{-1}r_{0}, r_{0}) \left[1 - \alpha \frac{(r_{0}, r_{0})}{(A^{-1}r_{0}, r_{0})} - \beta \frac{(Ar_{0}, r_{0})}{(A^{-1}r_{0}, r_{0})} \right]. \end{split}$$

The result follows, since $(A^{-1}r_0, r_0) = ||e_0||_A^2$.

To determine the values of the constants α , β we use the orthogonality condition:

 $\tilde{r} \perp \mathcal{L} = \operatorname{span} \{r_0, Ar_0\}$

$$\begin{cases} (r_0 - \alpha A r_0 - \beta A^2 r_0, r_0) = 0, \\ (r_0 - \alpha A r_0 - \beta A^2 r_0, A r_0) = 0 \end{cases}$$

 \implies

 \implies

$$\begin{cases} \alpha(Ar_0, r_0) + \beta(A^2r_0, r_0) = (r_0, r_0), \\ \alpha(Ar_0, Ar_0) + \beta(A^2r_0, Ar_0) = (Ar_0, r_0). \end{cases}$$

Solving this 2×2 system we get

$$\begin{aligned} \alpha &= \frac{1}{\sigma} \left[(A^2 r_0, A r_0) (r_0, r_0) - (A r_0, A r_0) (A r_0, r_0) \right], \\ \beta &= \frac{1}{\sigma} \left[(A r_0, r_0)^2 - (A r_0, A r_0) (r_0, r_0) \right], \end{aligned}$$

where

$$\sigma = (A^2 r_0, A r_0)(A r_0, r_0) - (A r_0, A r_0)^2.$$

Now we can determine a lower bound for the term $\beta \frac{(Ar_0, r_0)}{(A^{-1}r_0, r_0)}$.

We write

$$\beta \frac{(Ar_0, r_0)}{(A^{-1}r_0, r_0)} = \frac{(Ar_0, r_0)}{(A^{-1}r_0, r_0)} \cdot \frac{(Ar_0, r_0)^2 - (Ar_0, Ar_0)(r_0, r_0)}{(A^2r_0, Ar_0)(Ar_0, r_0) - (Ar_0, Ar_0)^2}$$
$$= \frac{(r_0, r_0)}{(A^{-1}r_0, r_0)} \cdot \frac{(r_0, r_0)}{(Ar_0, r_0)} \cdot \left(\frac{R_0^2 - R_1}{R_2 - R_1^2}\right),$$

where

$$R_{0} = \frac{(Ar_{0}, r_{0})}{(r_{0}, r_{0})}$$

$$R_{1} = \frac{(Ar_{0}, Ar_{0})}{(r_{0}, r_{0})} = \frac{(A^{2}r_{0}, r_{0})}{(r_{0}, r_{0})}$$

$$R_{2} = \frac{(A^{2}r_{0}, Ar_{0})}{(Ar_{0}, r_{0})} = \frac{(A^{2}r_{0}, Ar_{0})}{(Ar_{0}, Ar_{0})} \cdot \frac{(Ar_{0}, r_{0})}{(r_{0}, r_{0})} \cdot \frac{(r_{0}, r_{0})}{(Ar_{0}, r_{0})}.$$

The following inequalities (based on Rayleigh quotients of A and A^2 can be easily verified:

$$\lambda_{\min} \le R_0 \le \lambda_{\max},$$

$$\lambda_{\min}^2 \le R_1 \le \lambda_{\max}^2,$$

$$\frac{\lambda_{\min}^3}{\lambda_{\max}} \le R_2 \le \frac{\lambda_{\max}^3}{\lambda_{\min}}.$$

Combining these inequalities together with Kantorovich inequality, we get that

$$\beta \frac{(Ar_0, r_0)}{(A^{-1}r_0, r_0)} \geq \frac{4\lambda_{\max}\lambda_{\min}}{(\lambda_{\max} + \lambda_{\min})^2} \cdot \frac{\lambda_{\min}^2 - \lambda_{\max}^2}{\frac{\lambda_{\max}^3 - \lambda_{\min}^2}{\lambda_{\min}} - \lambda_{\min}^4} \geq \frac{4\lambda_{\max}\lambda_{\min}^2}{\lambda_{\max}^3 - \lambda_{\min}^5} \left(\frac{\lambda_{\min} - \lambda_{\max}}{\lambda_{\min} + \lambda_{\max}}\right).$$

Problem 3

From the discretization of the Poisson problem we have Ax = b where A = tridiag(-1, 2, -1). The SSOR method can be re-written compactly as

$$x_{k+1} = (D - \omega F)^{-1} \left[\omega E + (1 - \omega D) \right] (D - \omega E)^{-1} \left[\omega F + (1 - \omega D) \right] x_k + R_{\omega} b_k$$

where R_{ω} controls remaining terms. This gives the iteration matrix as

$$G_{\omega} = (D - \omega F)^{-1} \underbrace{[\omega E + (1 - \omega D)]}_{I} (D - \omega E)^{-1} \underbrace{[\omega F + (1 - \omega D)]}_{II}$$

a) We use the splitting A = D - E - F to eliminate F from (I), and E from (II). We obtain

$$G_{\omega} = (D - \omega F)^{-1} [(D - \omega F) - \omega A] (D - \omega E)^{-1} [(D - \omega E) - \omega A]$$

= $[I - \omega (D - \omega F)^{-1} A] [I - \omega (D - \omega E)^{-1} A]$
= $I - \omega (D - \omega F)^{-1} A - \omega (D - \omega E)^{-1} A + \omega^2 (D - \omega F)^{-1} A (D - \omega E)^{-1} A$
= $I - \omega (D - \omega F)^{-1} [(D - \omega E) + (D - \omega F) - \omega A] (D - \omega E)^{-1} A$
= $I - \omega (2 - \omega) (D - \omega F)^{-1} D (D - \omega E)^{-1} A$.

b) Given $x_{k+1} = M^{-1}Nx_k + M^{-1}r_k$, with A = M - N the iteration matrix is given by $G = M^{-1}N = I - M^{-1}A.$

So from the expression for G_{ω} , it follows that the preconditioner is given by

$$M_{\omega} = \left(\omega(2-\omega)(D-\omega F)^{-1}D(D-\omega E)^{-1}\right)^{-1}$$
$$= \frac{1}{\omega(2-\omega)}(D-\omega E)D^{-1}(D-\omega F).$$

For the given matrix, we observe that $F = E^T$. This implies that M_{ω} is symmetric. Also $1/(\omega(2-\omega)) > 0$ since $\omega \in (0,2)$. Moreover

$$((D - \omega E)D^{-1}(D - \omega F)x, x) = (D^{-1}(D - \omega E^T)x, (D - \omega E^T)x) > 0, \text{ for all } x \neq 0,$$

since both D^{-1} and $(D-\omega E^T)$ are nonsingular (as triangular matrices with determinants given by $\det(D^{-1}) \neq 0$).

This proves that M_{ω} as well as M_{ω}^{-1} are SPD.

c) Let

$$f(\omega) = \kappa(M_{\omega}^{-1}A) = \frac{2an^2 + \lambda_{\min}}{(2-\omega)\lambda_{\min}} = \gamma\left(\frac{1}{\omega} - \frac{1}{2}\right) + \frac{1}{2-\omega},$$

where $\gamma = \frac{n^2}{\lambda_{\min}}$, $a = \frac{(2-\omega)^2}{4\omega}$. Then the condition number is minimized when $f'(\omega) = 0$.

$$f(\omega) = 0$$

$$\downarrow$$

$$-\frac{1}{\omega^2} + \frac{1}{(2-\omega)^2} = 0,$$

$$-\gamma(2-\omega)^2 + \omega^2 = 0,$$

$$[\omega - \sqrt{\gamma}(2-\omega)][\omega + \sqrt{\gamma}(2-\omega)] = 0$$

For $\omega \in (0, 2)$ we must have

$$\omega - \sqrt{\gamma}(2 - \omega) = 0.$$

Thus

$$\omega_{\rm opt} = \frac{2\sqrt{\gamma}}{1+\sqrt{\gamma}}$$

For this value of ω the condition number is given by

$$f(\omega_{\text{opt}}) = \frac{1}{2} + \sqrt{\gamma} = \frac{1}{2} + \frac{n}{2\sin\frac{\pi}{2n}} \simeq \frac{n^2}{\pi}, \quad \text{for } n \gg 1.$$

Problem 4

Let

$$A = \begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & -1\\ 1 & 0 & 1 \end{bmatrix}.$$
 (4)

a) For the convergence of conjugate gradient iterations for the normal equation $A^T A x = A^T b$ we only require that $A^T A$ be SPD. The normal matrix is clearly symmetric. This means its eigenvalues are real. Also

$$x^T A^T A x = (Ax)^T (Ax) > 0, \quad \forall x \neq 0,$$

since A is full-rank (by inspection we observe that the columns of A are linearly independent.

b) First we compute

$$A^{T}A = \begin{bmatrix} -1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}.$$

The condition number of $A^T A$ can be obtained by

$$\kappa_2(A) = \frac{\lambda_{\max}}{\lambda_{\min}}.$$

To compute the eigenvalues of $A^T A$ we can use the characteristic equation (since this is a small matrix dim < 5).

$$\begin{vmatrix} 3-\lambda & -1 & 0\\ -1 & 2-\lambda & -1\\ 0 & -1 & 3-\lambda \end{vmatrix} = 0,$$
$$\Downarrow$$
$$(3-\lambda)[(2-\lambda)(3-\lambda)-1] + 1[-(3-\lambda)] = 0,$$
$$(3-\lambda)(4-\lambda)(1-\lambda) = 0.$$

The eigenvalues are $\lambda = 1, 3, 4$. This also shows that $A^T A$ is SPD, since all its eigenvalues are positive. We obtain

$$\kappa_2(A) = \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{4}{1} = 4.$$

Applying a diagonal preconditioner to the normal matrix, yields

$$\begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & -\frac{1}{3} & 1 \end{bmatrix}.$$

This contracts the Gerschgorin's discs (intervals in this case) into [1/2, 3/2], [2/3, 4/3], which shows condition now has an upper bound given by

$$\frac{\lambda_{\max}^{\text{prec}}}{\lambda_{\min}^{\text{prec}}} \le \frac{3/2}{1/2} = 3.$$

This smaller than $\kappa(A^T A) = 4$. Thus the diagonal precondition gives some improvement.

c) If the SVD for A is given by $A = U\Sigma V^T$, then

$$A^T A = V \Sigma^2 V^T.$$

This shows that $A^T A$ and Σ^2 are similar. So the singular values of A must satisfy

$$\sigma_1^2 = 4, \quad \sigma_2^2 = 3 \quad \sigma_3^2 = 1,$$

giving

$$\sigma_1 = 2, \quad \sigma_2 = \sqrt{3}, \quad \sigma_3 = 1.$$

d) We compute the 1-, 2-, ∞ - and Frobenius-norms of A as follows:

$$\begin{split} \|A\|_{1} &\stackrel{\text{def}}{=} \max_{1 \le j \le 3} \sum_{i=1}^{4} |a_{ij}| = \max\{3, 2, 3\} = 3. \\ \|A\|_{\infty} &\stackrel{\text{def}}{=} \max_{1 \le i \le 4} \sum_{j=1}^{3} |a_{ij}| = \max\{2, 2, 2, 2\} = 2 \\ \|A\|_{2} = \sigma_{\max} = \sigma_{1} = 2. \\ \|A\|_{F} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2}} = \sqrt{8} = 2\sqrt{2}. \end{split}$$