
TMA4205 - Autumn 2012

Exam - Suggested solutions

17.12.2012

Problem 1

The matrix

A =







2 0 0 1
0 3 −1 1
0 −1 2 0
1 1 0 2







(1)

is unitarily similar to an upper Hessenberg matrix H.
This means

A = QHQT ,

where Q is a unitary matrix (i.e. QTQ = QQT = I).

a) We observe that A is symmetric. Therefore, since H = QTAQ, we have that

HT = QTATQ = QTAQ = H.

This implies that H is both symmetric and upper Hessenberg.
Thus, H must be tridiagonal.

b) The matrices A and H have the same eigenvalues (by similarity). Also we note the the
eigenvalues of A are all real since A = AT . The matrix is diagonally dominant, but not
strictly so. By Gerschgorin’s theorem, all the eigenvalues lie in the union of the intervals
[1, 3], [1, 5], [0, 4]. This shows that the eigenvalues of A are all nonnegative. Since A is
suppose to be nonsingular, no eigenvalue can be zero. Therefore all the eigenvalues of
A are positive. This means all the eigenvalues of H are positive (by similarity). Hence
H is SPD.

c) Suppose we were to compute H, we will need to apply two Householder reflectors Q1 =
I − 2v1v

T
1 and Q2 = I − 2v2v

T
2 from the left and right of the matrix A. This is done in

the following order:

A
AQ1−→ A1

A1Q1−→ H1
Q2H1−→ A2

A2Q2−→ H.

We can choose

v1 =
1√
2







0
1
0
1







, from the first column of A.
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We have

H1 = Q1AQ1 =







2 −1 0 0
−1 2 0 1
0 0 2 1
0 1 1 3






.

We now choose

v2 =
1√
2







0
0
1
1







, from the second column of H1.

The result is
H = Q2H1Q2 = Q2Q1AQ1Q2 = QTAQ

giving
Q = Q1Q2.

To compute Q we only need to compute the columns:

Q = [Qe1|Qe2|Qe3|Qe4] ,

where ek, k = 1, 2, 3, 4 are the standard Euclidean unit vectors in R
4. Since in the

matrix-vector product Qjx only entries of x from row j + 1 downwards are altered, we
must have that

Qjek = ek, ∀j ≥ k.

So

Qe1 = Q1Q2e1 = e1,

Qe2 = Q1Q2e2 = Q1e2,

Qe3 = Q1Q2e3,

Qe4 = Q1Q2e4.

The computations are done as follows:

• Compute Qe2 = Q1e2:

Q1e2 = e2 − 2v1(v
T
1 e2)

=







0
1
0
0







−







0
1
0
1







=







0
0
0
−1







.
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• Compute Qe3 = Q1Q2e3:

Q2e3 = e3 − 2v2(v
T
2 e3)

=







0
0
1
0







−







0
0
1
1







=







0
0
0
−1







=: w.

Qe3 = Q1w = w − 2v1(v
T
1 w)

=







0
0
0
−1







+







0
1
0
1







=







0
1
0
0







.

• Compute Qe4 = Q1Q2e4:

Q2e4 = e4 − 2v2(v
T
2 e4)

=







0
0
0
1







−







0
0
1
1







=







0
0
−1
0







=: w.

Qe4 = Q1w = w − 2v1(v
T
1 w)

=







0
0
−1
0







+ 0 =







0
0
−1
0







.

Observe that no matrix-vector product is involved in the calculations!

Hence

Q =







1 0 0 0
0 0 1 0
0 0 0 −1
0 −1 0 0






.

Problem 2

a) We consider a matrix of the form

A = I + µS,

where µ is a scalar and S is skew-symmetric.

i) For any vector x 6= 0 of compatible dimension we have that

xTAx = xTx+ µxTSx.

Since ST = −S,

xTSx = (xTSx)T = −xTSx =⇒ xTSx = 0.

This implies that xTAx > 0 for any scalar µ. Thus A is SPD.
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ii) The Anoldi process with this matrix yields the upper Hessenberg matrix

Hm = V T
mAVm

= V T
mVm + µV T

mSVm

= Im + µV T
mSVm. (2)

The second term in (2) is skew-symmetric, since

= (V T
mSVm)T = V T

mSTVm = −V T
mSVm. (3)

Since both terms in (2) are also upper Hessenberg, and the diagonal entries of a
skew-symmmetric matrix are all zeros, Hm must have the tridiagonal form

Hm =









1 −η2
η2 1 −η3

· · ·
ηm−1 1 −ηm

ηm 1









.

b) We have the linear system Ax = b where A is SPD, and we consider an orthogonal
projection method for which the search and constraint spaces are given by L = K =
span {r0, Ar0} where r0 = b−Ax0 is the current residual. The solution update x̃ would
satisfy that x̃− x0 ∈ K. That means,

x̃ = x0 + αr0 + βAr0.

The corresponding residual vector is given by

r̃ = b−Ax̃ = r0 − αAr0 − βA2r0.

Also

ẽ = x− x̃ = e0 − αr0 − βAr0.

In the A norm we have that

‖ẽ‖2A = (ẽ, ẽ)A

= (ẽ, e0 − αr0 − βAr0)A

= (ẽ, e0)A − (r̃, αr0 + βAr0), since Aẽ = r̃

= (ẽ, e0)A, since r̃ ⊥ L
= (ẽ, r0), since Ae0 = r0

= (e0 − αr0 − βAr0, r0)

= (A−1r0, r0)− α(r0, r0)− β(Ar0, r0)

= (A−1r0, r0)

[

1− α
(r0, r0)

(A−1r0, r0)
− β

(Ar0, r0)

(A−1r0, r0)

]

.

The result follows, since (A−1r0, r0) = ‖e0‖2A.
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To determine the values of the constants α, β we use the orthogonality condition:

r̃ ⊥ L = span {r0, Ar0}

=⇒
{ (

r0 − αAr0 − βA2r0, r0
)
= 0,

(
r0 − αAr0 − βA2r0, Ar0

)
= 0

=⇒
{

α(Ar0, r0) + β(A2r0, r0) = (r0, r0),

α(Ar0, Ar0) + β(A2r0, Ar0) = (Ar0, r0).

Solving this 2× 2 system we get

α =
1

σ

[
(A2r0, Ar0)(r0, r0)− (Ar0, Ar0)(Ar0, r0)

]
,

β =
1

σ

[
(Ar0, r0)

2 − (Ar0, Ar0)(r0, r0)
]
,

where

σ = (A2r0, Ar0)(Ar0, r0)− (Ar0, Ar0)
2.

Now we can determine a lower bound for the term β
(Ar0, r0)

(A−1r0, r0)
.

We write

β
(Ar0, r0)

(A−1r0, r0)
=

(Ar0, r0)

(A−1r0, r0)
· (Ar0, r0)

2 − (Ar0, Ar0)(r0, r0)

(A2r0, Ar0)(Ar0, r0)− (Ar0, Ar0)2

=
(r0, r0)

(A−1r0, r0)
· (r0, r0)

(Ar0, r0)
·
(
R2

0 −R1

R2 −R2
1

)

,

where

R0 =
(Ar0, r0)

(r0, r0)

R1 =
(Ar0, Ar0)

(r0, r0)
=

(A2r0, r0)

(r0, r0)

R2 =
(A2r0, Ar0)

(Ar0, r0)
=

(A2r0, Ar0)

(Ar0, Ar0)
· (Ar0, r0)
(r0, r0)

· (r0, r0)

(Ar0, r0)
.

The following inequalities (based on Rayleigh quotients of A and A2 can be easily verified:

λmin ≤ R0 ≤ λmax,

λ2
min ≤ R1 ≤ λ2

max,

λ3
min

λmax
≤ R2 ≤

λ3
max

λmin
.

Combining these inequalities together with Kantorovich inequality, we get that

β
(Ar0, r0)

(A−1r0, r0)
≥ 4λmaxλmin

(λmax + λmin)2
· λ

2
min − λ2

max
λ3
max

λmin
− λ4

min

≥ 4λmaxλ
2
min

λ3
max − λ5

min

(
λmin − λmax

λmin + λmax

)

.
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Problem 3

From the discretization of the Poisson problem we have Ax = b where A = tridiag(−1, 2,−1).
The SSOR method can be re-written compactly as

xk+1 = (D − ωF )−1 [ωE + (1− ωD)] (D − ωE)−1 [ωF + (1− ωD)] xk +Rωb,

where Rω controls remaining terms. This gives the iteration matrix as

Gω = (D − ωF )−1 [ωE + (1− ωD)]
︸ ︷︷ ︸

I

(D − ωE)−1 [ωF + (1− ωD)]
︸ ︷︷ ︸

II

.

a) We use the splitting A = D−E−F to eliminate F from (I), and E from (II). We obtain

Gω = (D − ωF )−1 [(D − ωF )− ωA] (D − ωE)−1 [(D − ωE)− ωA]

=
[
I − ω(D − ωF )−1A

] [
I − ω(D − ωE)−1A

]

= I − ω(D − ωF )−1A− ω(D − ωE)−1A+ ω2(D − ωF )−1A(D − ωE)−1A

= I − ω(D − ωF )−1 [(D − ωE) + (D − ωF )− ωA] (D − ωE)−1A

= I − ω(2− ω)(D − ωF )−1D(D − ωE)−1A.

b) Given xk+1 = M−1Nxk +M−1rk, with A = M −N the iteration matrix is given by

G = M−1N = I −M−1A.

So from the expression for Gω, it follows that the preconditioner is given by

Mω =
(
ω(2− ω)(D − ωF )−1D(D − ωE)−1

)−1

=
1

ω(2− ω)
(D − ωE)D−1(D − ωF ).

For the given matrix, we observe that F = ET . This implies that Mω is symmetric.
Also 1/(ω(2 − ω)) > 0 since ω ∈ (0, 2). Moreover

((D − ωE)D−1(D − ωF )x, x) = (D−1(D − ωET )x, (D − ωET )x) > 0, for all x 6= 0,

since both D−1 and (D−ωET ) are nonsingular (as triangular matrices with determinants
given by det(D−1) 6= 0).

This proves that Mω as well as M−1
ω are SPD.

c) Let

f(ω) = κ(M−1
ω A) =

2an2 + λmin

(2− ω)λmin
= γ

(
1

ω
− 1

2

)

+
1

2− ω
,

where γ = n2

λmin
, a = (2−ω)2

4ω . Then the condition number is minimized when f ′(ω) = 0.

f ′(ω) = 0

⇓

− 1

ω2
+

1

(2− ω)2
= 0,

−γ(2− ω)2 + ω2 = 0,

[ω −√
γ(2− ω)][ω +

√
γ(2− ω)] = 0
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For ω ∈ (0, 2) we must have

ω −√
γ(2− ω) = 0.

Thus

ωopt =
2
√
γ

1 +
√
γ

For this value of ω the condition number is given by

f(ωopt) =
1

2
+

√
γ =

1

2
+

n

2 sin π
2n

≃ n2

π
, for n ≫ 1.

Problem 4

Let

A =







−1 0 1
1 −1 0
0 1 −1
1 0 1






. (4)

a) For the convergence of conjugate gradient iterations for the normal equation ATAx =
AT b we only require that ATA be SPD. The normal matrix is clearly symmetric. This
means its eigenvalues are real. Also

xTATAx = (Ax)T (Ax) > 0, ∀x 6= 0,

since A is full-rank (by inspection we observe that the columns of A are linearly inde-
pendent.

b) First we compute

ATA =





−1 1 0 1
0 −1 1 0
1 0 −1 1











−1 0 1
1 −1 0
0 1 −1
1 0 1






=





3 −1 0
−1 2 −1
0 −1 3



 .

The condition number of ATA can be obtained by

κ2(A) =
λmax

λmin
.

To compute the eigenvalues of ATA we can use the characteristic equation (since this is
a small matrix dim < 5).

∣
∣
∣
∣
∣
∣

3− λ −1 0
−1 2− λ −1
0 −1 3− λ

∣
∣
∣
∣
∣
∣

= 0,

⇓
(3− λ)[(2 − λ)(3− λ)− 1] + 1[−(3 − λ)] = 0,

(3− λ)(4 − λ)(1− λ) = 0.
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The eigenvalues are λ = 1, 3, 4. This also shows that ATA is SPD, since all its eigen-
values are positive. We obtain

κ2(A) =
λmax

λmin
=

4

1
= 4.

Applying a diagonal preconditioner to the normal matrix, yields





1 −1
3 0

−1
2 1 −1

2
0 −1

3 1



 .

This contracts the Gerschgorin’s discs (intervals in this case) into [1/2, 3/2], [2/3, 4/3],
which shows condition now has an upper bound given by

λprec
max

λprec
min

≤ 3/2

1/2
= 3.

This smaller than κ(ATA) = 4. Thus the diagonal precondition gives some improvement.

c) If the SVD for A is given by A = UΣV T , then

ATA = V Σ2V T .

This shows that ATA and Σ2 are similar. So the singular values of A must satisfy

σ2
1 = 4, σ2

2 = 3 σ2
3 = 1,

giving

σ1 = 2, σ2 =
√
3, σ3 = 1.

d) We compute the 1-, 2-, ∞- and Frobenius-norms of A as follows:

‖A‖1
def
= max

1≤j≤3

4∑

i=1

|aij | = max{3, 2, 3} = 3.

‖A‖∞
def
= max

1≤i≤4

3∑

j=1

|aij | = max{2, 2, 2, 2} = 2.

‖A‖2 = σmax = σ1 = 2.

‖A‖F =
√

σ2
1 + σ2

2 + σ2
3 =

√
8 = 2

√
2.
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