

3

TMA4205 Numerical Linear Algebra Fall 2013

Exercise set 4

1 Saad, Exercise 5.3 In Section 5.3.3, it was shown that using a one-dimensional projection method with $\mathcal{K} = \operatorname{span}\{A^{\mathrm{T}}r\}$ and $\mathcal{L} = \operatorname{span}\{AA^{\mathrm{T}}r\}$ is equivalent to using the steepest descent method on the normal equations $A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$.

Show that an *orthogonal* projection method for $A^{T}Ax = A^{T}b$ with search space \mathcal{K} is equivalent to applying a projection method onto \mathcal{K} orthogonally to $\mathcal{L} = A\mathcal{K}$ for the problem Ax = b.

- 2 Algorithm 6.1 in Saad is implemented in the MATLAB-function arnoldi_gs.m. This algorithm constructs an orthogonal basis for the Krylov subspace $\mathcal{K}_m(A, v)$ based on a classical Gram–Schmidt procedure. Test this function on the matrix *A* generated by poisson2.m (use sparse matrices) for different values of *m* and $N = n^2$. For instance, choose N = 100, $v = e_1$, and m = 10, 20, 30, 40, 50.
 - **a)** Test to what extent the relation $V_m^T A V_m = H_m$ from Proposition 6.5 in Saad is fulfilled. Also check if the vectors v_1, \ldots, v_m really are orthonormal, i.e. check whether $V_m^T V_m = I_m$ (exactly).
 - **b)** Modify the function arnoldi_gs.m such that it uses modified Gram–Schmidt. Repeat the experiments from the previous question.
 - **a)** If *A* is symmetric and positive definite (SPD), show that A^{-1} can be used to define a norm on \mathbb{R}^n ,

$$\|v\|_{A^{-1}} = (v^{\mathrm{T}}A^{-1}v)^{1/2}$$

- **b)** We know that the conjugate gradient (CG) method will minimize the error in *A*-norm over all elements in the Krylov subspace $\mathcal{K}_m(A, r_0)$. Show that the algorithm also, in each iteration, will minimize the associated residual in A^{-1} -norm.
- **c)** Each update of the solution in CG can be expressed as $x_{j+1} = x_j + \alpha_j p_j$, where $\alpha_j = (r_j, r_j)/(Ap_j, p_j)$ (see Algorithm 6.18 in Saad). Show that α_j is optimal in the sense that it minimizes the functional $f(w) = \frac{1}{2}w^T Aw w^T b$, $f: \mathbb{R}^n \to \mathbb{R}$, along the search direction p_j .