Norwegian University of Science and Technology
Department of Mathematical Sciences

TMA4205 Numerical Linear Algebra Fall 2013

Exercise set 6

1 Consider the matrix

$$
A=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right]
$$

a) Using Householder reflectors, compute (by hand) the QR factorization of A.
b) Calculate the eigenvalues and eigenvectors of the matrix $A^{\mathrm{T}} A$.
c) Use your results in b) to compute (by hand) the SVD of A.
d) Find the 1-, 2-, ∞ - and Frobenius norms of A.

2 For each of the following, show that the statement is correct, or give a counter-example. If nothing else is written, assume that $A \in \mathbb{C}^{m \times m}$.
a) If λ is an eigenvalue of A and $\mu \in \mathbb{C}$, then $\lambda-\mu$ is an eigenvalue of $A-\mu \mathrm{I}$.
b) If A is real and λ is an eigenvalue of A, then $-\lambda$ is an eigenvalue of A.
c) If A is real and λ is an eigenvalue of A, then $\bar{\lambda}$ is an eigenvalue of A.
d) If λ is an eigenvalue of A and A is nonsingular, then λ^{-1} is an eigenvalue of A^{-1}.
e) If all the eigenvalues of A are zero, then $A=0$.
f) If A is Hermitian and λ is an eigenvalue of A, then $|\lambda|$ is a singular value of A.
g) If A is diagonalizable and all eigenvalues are equal, then A is diagonal.

