

TMA4205 Numerical Linear Algebra Fall 2013

Exercise set 6

1 Consider the matrix

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$

- a) Using Householder reflectors, compute (by hand) the QR factorization of A.
- **b**) Calculate the eigenvalues and eigenvectors of the matrix $A^{T}A$.
- **c)** Use your results in **b**) to compute (by hand) the SVD of *A*.
- **d)** Find the 1-, 2-, ∞ and Frobenius norms of *A*.
- 2 For each of the following, show that the statement is correct, or give a counter-example. If nothing else is written, assume that $A \in \mathbb{C}^{m \times m}$.
 - **a)** If λ is an eigenvalue of *A* and $\mu \in \mathbb{C}$, then $\lambda \mu$ is an eigenvalue of $A \mu$ I.
 - **b)** If *A* is real and λ is an eigenvalue of *A*, then $-\lambda$ is an eigenvalue of *A*.
 - c) If *A* is real and λ is an eigenvalue of *A*, then $\overline{\lambda}$ is an eigenvalue of *A*.
 - **d)** If λ is an eigenvalue of *A* and *A* is nonsingular, then λ^{-1} is an eigenvalue of A^{-1} .
 - e) If all the eigenvalues of *A* are zero, then A = 0.
 - **f)** If *A* is Hermitian and λ is an eigenvalue of *A*, then $|\lambda|$ is a singular value of *A*.
 - **g**) If *A* is diagonalizable and all eigenvalues are equal, then *A* is diagonal.