
TMA4205 Numerical Linear Algebra

The Poisson problem in R2:

diagonalization methods

September 3, 2007

c©Einar M. Rønquist
Department of Mathematical Sciences
NTNU, N-7491 Trondheim, Norway

All rights reserved

1

1 A direct method based on diagonalization

We consider here the numerical solution of the Poisson problem based on finite
differences. In particular, we focus on a particular method for solving the linear
system of equations in one and two space dimensions. The method is based on
diagonalization, and we first explain the basic approach in the context of the one-
dimensional Poisson problem:

−uxx = f in Ω = (0, 1),

u(0) = u(1) = 0.

Assume that we use a uniform finite difference grid given by:

xi = x0 + ih, i = 0, 1, . . . , n.

The corresponding system of algebraic equations can be written as:

1

h2

2 −1
−1 2 −1

−1 2 −1
. . . −1
−1 2

u1

u2
...
...

un−1

 =

f1

f2
...
...

fn−1

 ,

where ui is an approximation to u(xi) = u(ih), i = 1, . . . , n− 1, fi = f(xi), and
u0 = un = 0 due to the specified boundary conditions. Let us write this system as

1

h2
T u = f

where

T =

2 −1
−1 2 −1

−1 2 −1
. . . −1
−1 2

 , u =

u1
...
...
...

un−1

 , f =

f1
...
...
...

fn−1

 ,

and h is the grid size or mesh size. Since T is symmetric positive definite, it can
be diagonalized. (Recall that a real, symmetric matrix is a normal matrix.)

2

1.1 Diagonalization of T

Diagonalization of T means that we wish to find the eigenvalues λj and the eigen-
vectors q

j
of T ,

T q
j
= λj q

j
, j = 1, . . . , n− 1,

where

λj > 0 (positive eigenvalues),

qT

k
q

j
= δjk (orthonormal eigenvectors).

We collect all the eigenvectors q
j

into the (orthonormal) matrix Q,

Q = [q
1
, q

2
, . . . , q

n−1
].

Then

T Q = Q Λ

where

Λ = diag(λ1, . . . , λn−1) =

λ1

. . .
. . .

λn−1

 .

Since

QT Q = I =

1

. . .
. . .

1

 ⇒ QT = Q−1,

and

T = Q Λ QT (1)

or

QT T Q = Λ (diagonal).

3

The finite difference approximation can thus be computed as follows:

g ≡ h2f g : O(n) operations

T u = g

Q Λ QT u = g

Λ QT u︸︷︷︸eu
= QT g︸︷︷︸eg

g̃ : O(n2) operations

Λũ = g̃

ũ = Λ−1g̃ ũ : O(n) operations

QT u = ũ

u = Q ũ u : O(n2) operations

Note that the transformations

g̃ = QT g and u = Q ũ

are matrix-vector products operations. In summary, we can compute u in

O(n) +O(n2) +O(n) +O(n2) ∼ O(n2) floating-point operations.

Hence, we can solve our finite difference system in (n − 1) unknowns in O(n2)
operations. This is not competitive with a direct solution algorithm based upon
LU-factorization (Gaussian elimination) of a tridiagonal matrix, which can be done
in O(n) operations (since the bandwidth is equal to one).

Let us also compare the memory requirement:

O(n2) for the diagonalization approach (we need to store Q);

O(n) for a tridiagonal direct solver.

Again, the diagonalization approach is not competitive.
So, why bother? The answer is that the diagonalization approach becomes

more interesting in R2. In addition, it turns out that it is possible to use the Fast
Fourier Transform (FFT) to lower the computational complexity.

4

2 The Poisson problem in R2

The two-dimensional Poisson problem on the unit square is given by

−∇2u = f in Ω = (0, 1)× (0, 1),

u = 0 on ∂Ω,
(2)

where ∇2u = ∂2u
∂x2 + ∂2u

∂y2 .

h

(x0, y0) h

(xn, yn)

Figure 1: A uniform finite difference grid.

Again, using the notation ui,j ' u(xi, yj) = u(ih, jh) and fi,j = f(xi, yj), and
discretizing (2) using the 5-point stencil (see Figure 1), the discrete equations read:

−(ui+1,j − 2ui,j + ui−1,j)

h2
− (ui,j+1 − 2ui,j + ui,j−1)

h2
= fi,j 1 ≤ i, j ≤ n−1. (3)

2.1 Diagonalization

Let

U =

u1,1 u1,n−1
...

...
...

...
un−1,1 un−1,n−1

5

and

T =

2 −1 0
−1 2 −1

. . .
−1 2 −1

0 −1 2

Then,

(T U)ij = 2ui,j − ui+1,j, i = 1,

(T U)ij = −ui−1,j + 2ui,j − ui+1,j, 2 ≤i ≤ n− 2,

(T U)ij = −ui−1,j + 2ui,j, i = n− 1.

and thus,

1

h2
(T U)ij ' −

(
∂2u

∂x2

)
i,j

. (4)

Similarly,

1

h2
(U T)ij ' −

(
∂2u

∂y2

)
i,j

. (5)

Our finite difference system (3) can thus be expressed as

1

h2
(T U + U T)ij = fi,j for

1 ≤ i ≤ n− 1,
1 ≤ j ≤ n− 1,

or

T U + U T = G (6)

where

G = h2

f1,1 f1,n−1
...

...
...

...
fn−1,1 fn−1,n−1

 .

6

Combining (1) and (6) we get

Q Λ QT U + U Q Λ QT = G. (7)

Multiplying (7) from the right with Q and from the left with QT , and using

the fact that QT Q = I, we get:

Λ QT U Q︸ ︷︷ ︸
≡eU

+ QT U Q︸ ︷︷ ︸
≡eU

Λ = QT G Q︸ ︷︷ ︸
≡ eG

.

Hence, (6) may be solved in three steps:

Step 1): Compute

G̃ = QT G Q − matrix-matrix
products.

Step 2): Solve

Λ Ũ + Ũ Λ = G̃

or

λi ũi,j + ũi,j λj = g̃i,j, 1 ≤ i, j ≤ n− 1

(λi + λj) ũi,j = g̃i,j, 1 ≤ i, j ≤ n− 1

ũi,j =
g̃i,j

λi + λj

1 ≤ i, j ≤ n− 1.

Step 3): Compute

U = QŨ QT − matrix-matrix
products.

Here,

U, Ũ , G̃, Q, QT ∈ R(n−1)×(n−1).

7

2.1.1 Computational cost

The number of degrees-of-freedom (or unknowns), N , is

N = (n− 1)2 ∼ O(n2) (n� 1).

Step 1)

G̃ =

O(n3)︷ ︸︸ ︷
QT G Q︸︷︷︸

O(n3)

−→ O(n3) operations.

Step 2)

ũi,j =
g̃i,j

λi + λj

−→ O(n2) operations.

Step 3)

U =

O(n3)︷ ︸︸ ︷
QŨ QT︸ ︷︷ ︸

O(n3)

−→ O(n3) operations.

In summary, we can compute the discrete solution, U , inO(n3) = O(N3/2) operations.
Note: this method is an example of a direct method.

2.1.2 Comparison with other direct methods

Computational cost
Method Operations (Nop) Memory requirement (M)

Diagonalization O(N3/2) = O(n3) O(N) = O(n2)
Banded LU O(Nb2) = O(n4) O(Nb) = O(n3)
Full LU O(N3) = O(n6) O(N2) = O(n4)

Table 1: Computational cost and memory requirement for direct methods. For the
banded solver, we have used a bandwidth b ∼ O(n).

We conclude that the diagonalization method is much more attractive in R2

than in R1. The number of floating-point operations per degree-of-freedom isO(n),
while the memory requirement is close to optimal (i.e., scalable).

8

2.1.3 The matrices Q and Λ.

The computational cost associated with the diagonalization approach tacitly as-
sumes that we know the eigenvector matrix Q and the corresponding eigenvalues.
Let us therefore derive explicit expressions for these. To this end, consider first
the continuous eigenvalue problem

−uxx = λu in Ω = (0, 1),

u(0) = u(1) = 0,

with solutions

u∗j(x) = sin(jπx),

λ∗j = j2π2,
j = 1, 2, . . . ,∞.

Consider now the discrete eigenvalue problem

T q̃
j
= λj q̃

j
.

Try eigenvector solutions which correspond to the continuous eigenfunctions
u∗j(x) sampled at the grid points xi, i = 1, . . . , n− 1, i.e.,

(q̃
j
)i = u∗j(xi)

= sin(jπxi)

= sin(jπ(ih)),

(
h =

1

n

)
= sin

(
ijπ

n

)
Operating on q̃

j
with T gives

(T q̃
j
)i = 2

(
1− cos

(
jπ

n

))
︸ ︷︷ ︸

λj

sin

(
ijπ

n

)
︸ ︷︷ ︸

(eq
j
)i

.

Hence, our try was successful: operating on q̃
j

with T gives a multiple of q̃
j
.

9

In order to proceed, set q
j
= α q̃

j
, and choose α such that q

j
is normalized:

qT

j
q

j
= 1,

⇓

(q
j
)i =

√
2

n
sin

(
ijπ

n

)
, 1 ≤ i, j ≤ n− 1,

λj = 2

(
1− cos

(
jπ

n

))
.

For j � n, we observe that

λj ' 2

(
1−

(
1− 1

2

j2π2

n2
+ . . .

))
' j2π2

n2
.

Since h = 1
n
, we have

λj ' h2j2π2 = h2λ∗j for j � n.

Since the approximation of the one-dimensional Laplace operator on our finite
difference grid is equal to 1

h2 T (and not T), this is the same as saying that the first,
lowest eigenvalues (and eigenvectors) for the continuous case are well approximated
by our finite difference formulation.

Note that in this case

Qij = (q
j
)i =

√
2

n
sin

(
ijπ

n

)
, 1 ≤ i, j ≤ n− 1,

and that indeed

QT = Q.

From the comparison of computational cost shown earlier (see Table 1), the di-
agonalization approach to solving the discrete Poisson problem appears promising.

10

Questions:

1. Is the memory requirement optimal?

2. Can the matrix-matrix multiplications be done fast?

3. Can we do better?

4. Can the diagonalization method be extended to three space dimensions?

5. Can the diagonalization method be used on general domains?

The answer to the first question is yes: we need to store O(n2) floating point
numbers for O(n2) unknowns. Note that we store the unknowns as a multi-
dimensional array instead of as a long vector. Also note that we never form the
global system matrix in the two-dimensional case.

The answer to the second question is yes. Matrix-matrix multiplication is one
of the fastest floating-point tasks on modern microprocessors. The best perfor-
mance is normally achieved using the appropriate BLAS (Basic Linear Algebra
Subroutines) library function since this library is optimized for each particular mi-
croprocessor. Matrix-matrix multiplication is one of the operations which comes
closest to maximum theoretical performance (i.e., the maximum number of floating
point operations per second). The reason for this is that the number of operations
per memory reference is high: O(n3) floating point operations and O(n2) memory
references. Note that bringing data to and from memory is often the bottleneck
when it comes to performance.

The answer to the third question is yes. The matrix-vector multiplication w =
Qv (or w = QT v can alternatively be done via the Discrete Sine Transform (DST).
This is, of course, related to the fact that the columns of Q represent the continuous
eigenfunctions u∗j(x) = sin(jπx), j = 1, . . . , n − 1, sampled at the internal grid
points. However, the DST is again related to the Discrete Fourier Transform
(DFT), which can be performed most efficiently using the Fast Fourier Transform
(FFT). Hence, instead of obtaining w = Qv via matrix-vector multiplication in

O(n2) operations, we can alternatively obtain w from v via FFT in O(n log n)
operations. The solution of the Poisson problem in two space dimensions (i.e.,
O(n2) unknowns), can therefore be reduced from O(n3) operations to O(n2 log n)
operations. This is close to an optimal solver: O(log n) operations per unknown
and O(1) storage requirement per unknown.

The answer to the fourth question is yes, assuming that the domain is an
undeformed box and we use a simple, structured grid. This is also related to the
fifth question: the fast solution method presented here is only applicable on simple
domains. However, the approach is also attractive as a preconditioner for problems
which do not fall into this category (more on this later). The solver presented here
is an example of a class of solvers called tensor-product solvers.

11

