
Norwegian University of Science and
Technology
Department of Mathematical
Sciences

TMA4205 Numerical
Linear Algebra

Fall 2013

Solutions to exercise set 1

1 a) We have that

‖x‖2
1 =

(n∑
i=1

|xi |
)2 =

n∑
i=1

n∑
j=1

|xi ||x j | =
n∑

i=1
|xi |2 +

n∑
i=1

∑
j 6=i

|xi ||x j | ≥ ‖x‖2
2,

since |xi ||x j | is non-negative. We also have

‖x‖2
1 =

(n∑
i=1

|xi |
)2

=
n∑

i=1

n∑
j=1

|xi ||x j |

≤ 1
2

n∑
i=1

n∑
j=1

(|xi |2 +|x j |2)
(
ab ≤ 1

2 (a2 +b2) for any a,b ∈R)
= n

n∑
i=1

|xi |2

= n‖x‖2
2.

Hence, ‖x‖2 ≤ ‖x‖1 ≤
p

n ‖x‖2. Alternatively, for the second step we could have used
the Cauchy–Schwarz inequality

|yHx| ≤ ‖x‖2‖y‖2

and chosen

yi =
{

1 xi = 0,

xi /|xi | xi 6= 0.

Since |yi | = 1, this would have given ‖x‖1 = |yHx| ≤ ‖x‖2‖y‖2 =
p

n ‖x‖2, giving the
same result as above.

b) For the first inequality,

‖x‖2
2 =

n∑
i=1

|xi |2 ≥ max
1≤i≤n

|xi |2 = ‖x‖2
∞.

For the second inequality we have

‖x‖2
2 =

n∑
i=1

|xi |2 ≤
n∑

i=1
max

1≤ j≤n
|x j |2 =

n∑
i=1

‖x‖2
∞ = n‖x‖2

∞.

Hence, ‖x‖∞ ≤ ‖x‖2 ≤
p

n ‖x‖∞.

August 22, 2013 Page 1 of 7

Solutions to exercise set 1

c)

‖x‖1 =
n∑

i=1
|xi | ≥ max

1≤i≤n
|xi | = ‖x‖∞

and

‖x‖1 =
n∑

i=1
|xi | ≤

n∑
i=1

max
1≤ j≤n

|x j | = n‖x‖∞

give us that ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

2 The matrix A ∈ Cm×n , m ≥ n, has full rank if no column of A can be written as a linear
combination of the remaining columns. That is, if a j denotes the j th column of A, there
exists no vector c ∈Cn such that

a j =
n∑

i=1
i 6= j

ci ai , j = 1, . . . ,n.

Thus, if A has full rank, Ac = 0 implies c = 0. This means that A has a trivial nullspace (i.e.
Ker A = {0}).

(⇒) Assume that A has full rank. Let x1 and x2 be two distinct vectors. Then x1 −x2 6= 0,
and

Ax1 − Ax2 = A(x1 −x2) 6= 0, since Ker A = {0}.

Thus, Ax1 and Ax2 are distinct vectors.

(⇐) Assume that no two distinct vectors are mapped to the same vector. Let x be any
vector. Then we can write x = x1 −x2, where x1 and x2 are two other vectors. Assume
that Ax = 0. Then

Ax = 0 =⇒ Ax1 = Ax2 =⇒ x1 = x2 =⇒ x = 0.

Thus, Ker A = {0} and A has full rank.

3

[b1 | · · · | bn] = [Ar1 | · · · | Arn], R =


1 1 · · · 1

1 · · · 1
. . .

...
1


We have that

bi , j =
n∑

k=1
ai ,k rk, j ,

but since

ri , j =
{

1 i ≤ j ,

0 i > j ,

we get

bi , j =
j∑

k=1
ai ,k =⇒ b j =

j∑
k=1

ak .

August 22, 2013 Page 2 of 7

Solutions to exercise set 1

4 We define the matrix norm induced by the vector norm ‖·‖ by

‖A‖ := max
x∈Cn \{0}

‖Ax‖
‖x‖ .

Suppose A has p distinct eigenvalues λ1, . . . ,λp corresponding to eigenvectors v1, . . . , vp

respectively. Then

‖A‖ ≥ max
i

‖Avi‖
‖vi‖

= max
i

|λi |‖vi‖
‖vi‖

= max
i

|λi | = ρ(A).

v

x
lx

5 a) We have

‖E‖2 = max
x∈Cn \{0}

‖uvHx‖2

‖x‖2

= max
x∈Cn \{0}

|vHx|‖u‖2

‖x‖2

= ‖u‖2 max
x∈Cn \{0}

|vHx|
‖x‖2

(Maximum is attained when x =αv , for α 6= 0 scalar.)

= ‖u‖2
|vHv |
‖v‖2

= ‖u‖2‖v‖2.

Note that lx = |vHx|/‖x‖2 represents the length of the orthogonal projection of v on
x, so lx is maximal for vectors x having the same direction as v .

b) For the Frobenius norm we get

‖E‖F =
√√√√ n∑

i=1

n∑
j=1

|ui v̄ j |2 =
√√√√ n∑

i=1
|ui |2

n∑
j=1

|v j |2 =
√√√√ n∑

i=1
|ui |2

√√√√ n∑
j=1

|v j |2 = ‖u‖F‖v‖F.

6 For a unitary matrix Q, QHQ = I, where I is the identity matrix. We recall that the 2-norm

of a vector is given by ‖v‖2 =
p

vHv . This gives

‖Qx‖2 =
√

(Qx)HQx =
√

xHQHQx =
√

xHx = ‖x‖2.

Also, let ϕi be an eigenvector of Q with corresponding eigenvalue λi . Then

‖Qϕi‖2 = ‖ϕi‖2. (1)

But
‖Qϕi‖2 = ‖λiϕi‖2 = |λi |‖ϕi‖2. (2)

Comparing (1) and (2) we get that
|λi | = 1.

Thus, ρ(Q) = 1.

August 22, 2013 Page 3 of 7

Solutions to exercise set 1

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 106

Figure 1: Nonzero entries in the 1D Poisson matrix for n = 36

7 The purpose of this exercise is to show how the storage format and structure of a matrix
can influence the performance of the LU factorization of the matrix.

a) We here consider the one-dimensional problem

−d2u

dx2 = f (x), x ∈ [0,1],

u = 0, x ∈ {0,1}.

We discretize the problem using finite differences, applied on a partition of the
domain [0,1] into n +1 subintervals. We get the difference equations

−ui−1 −2ui +ui+1

h2 = fi , 1 ≤ i ≤ n,

u0 = un+1 = 0,

where h = 1/(n +1) and ui is the numerical approximation of u(i h). Since the dif-
ference equations relate three neighbouring points, the resulting matrix must be
tridiagonal (an n ×n banded matrix with bandwidth 1). See Figure 1.

With Gaussian elimination we eliminate the entries below the diagonal. For a full
matrix this would require O(n3) flops, but for a one-dimensional Poisson problem
we only have to eliminate the entries in the first sub-diagonal, since the rest are zero.
This would require only O(n) flops. Generally for a banded matrix of bandwidth
k, we must eliminate all nonzero entries below the diagonal. This would require
O(nk2) flops.

i) For n ×n matrices, Gaussian elimination in MATLAB is done by LU factorization.
When we save the matrix as a full matrix, MATLAB will eliminate all entries under
the diagonal, including entries that are already zeros. The amount of computing
time will be O(n3). That means, doubling the problem dimension would increase
the computing time by a factor 8. This can be observed in Table 1.
Since the predicted computing time is O(n3) we observe that Time/n3 is ap-
proximately constant (≈ 1 ·10−11).1 This confirms that the computing time is
O(n3).

ii) We repeat the numerical experiment in i) but using the sparse format in MATLAB

for storing the matrix. Here we observe O(n) computing time (see Table 2).
1Alternatively, a loglog plot of time versus n would give a straight line whose slope is approximately equal to 3.

August 22, 2013 Page 4 of 7

Solutions to exercise set 1

n Time (s) Time/n3

900 0.0104 1.43 ·10−11

1600 0.0443 1.08 ·10−11

2500 0.1551 9.929 ·10−12

3600 0.4090 8.766 ·10−12

Table 1: One-dimensional Poisson problem with full matrix

n Time (s) Time/n

900 1.81 ·10−4 2.01 ·10−7

1600 3.11 ·10−4 1.94 ·10−7

2500 4.83 ·10−4 1.93 ·10−7

3600 6.93 ·10−4 1.93 ·10−7

Table 2: One-dimensional Poisson problem with sparse matrix

b) We consider the two-dimensional problem

−
(
∂2u

∂x2 + ∂2u

∂y2

)
= f (x, y),

u = 0,

(x, y) ∈ [0,1]× [0,1],

x = 0, x = 1, y = 0, y = 1.

We partition [0,1] into n +1 intervals in both the x- and y-directions, and obtain the
following difference equations upon discretizing the problem:

−ui , j−1 +ui−1, j −4ui , j +ui+1, j +ui , j+1

h2 = f ,

u0, j = un+1, j = ui ,0 = ui ,n+1 = 0,

1 ≤ i , j ≤ n,

0 ≤ i , j ≤ n +1,

where h = 1/(n +1) and ui , j is the numerical approximation of u(xi , y j) with xi = i h
and y j = j h. Each difference equation relates the three neighbouring points in the
x-direction and the three neighbouring points in the y-direction. We number the
unknown variables first in the x-direction from bottom to top. The resulting matrix
has almost the same structure as in a), but in addition we have two bands a distance n
away from the diagonal. See Figure 2.

The number of unknowns has now become N = n2, and the bandwidth k = 2n +1 =
2
p

N +1. Storing the matrix as a full matrix will require that the computing time
increases as O(N 3), but if we store it as a sparse matrix we predict a computing time
of order O(N k2) = O(N 2).

i) Se Table 3 for the computing time with full matrix. We observe that the result is
like in a), with computing time O(N 3).

ii) We repeat the experiment using MATLAB’s sparse storage format (see Table 4).
Indeed, we observe O(N 2) computing time here. The matrix structure in the 2D
case is different from the 1D case (for the same number of unknowns), but by
exploiting sparsity, we get a significant speedup here too.

This exercise illustrates the problems encountered with using Gaussian elimination in
the numerical solution of differential equations in several space-dimensions (e.g. 2D or
3D). The bandwidth increases with space-dimension even if the dimension of the linear

August 22, 2013 Page 5 of 7

Solutions to exercise set 1

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 156

Figure 2: Nonzero entries in the 2D Poisson matrix for n = 6.

N Time (s) Time/N 3

900 0.0097 1.3 ·10−11

1600 0.0428 1.04 ·10−11

2500 0.1526 9.765 ·10−12

3600 0.4051 8.682 ·10−12

Table 3: Two-dimensional Poisson problem with full matrix

N Time (s) Time/N 2

900 2.242 ·10−3 2.768 ·10−9

1600 6.824 ·10−3 2.666 ·10−9

2500 1.552 ·10−2 2.484 ·10−9

3600 2.979 ·10−2 2.298 ·10−9

Table 4: Two-dimensional Poisson problem with sparse matrix

August 22, 2013 Page 6 of 7

Solutions to exercise set 1

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 71

(a) L

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 71

(b) U

Figure 3: Nonzero entries for L and U after LU factorization of the 1D Poisson matrix.

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 221

(a) L

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 221

(b) U

Figure 4: Nonzero entries for L and U after LU factorization of the 2D Poisson matrix.

system is kept constant. This makes Gaussian elimination less attractive for the solution
of large linear systems even with sparse matrix format. After LU-factorization the storage
requirement also increases, especially in the case of higher space-dimension. There are
O(n) nonzero entries before LU-factorization. After LU-factorization nearly all entries
between the diagonal and the outermost sub- or super-diagonal are nonzero. The storage
increases to about O(nk). See Figures 3 and 4.

August 22, 2013 Page 7 of 7

