

TMA4205 Numerical Linear Algebra Fall 2013

Norwegian University of Science and Technology Department of Mathematical Sciences

Solutions to exercise set 2

a) Since A is normal, it can be orthogonally diagonalized such that $A = Q\Lambda Q^{T}$, where the columns of Q are the eigenvectors q_{i} , and the entries of Λ are the eigenvalues λ_{i} of A.

First, assume that $x^T A x > 0$ for all $x \neq 0$. This must be true for $x = q_i$, so $q_i^T A q_i = \lambda_i q_i^T q_i = \lambda_i ||q_i||_2^2 > 0$. We have proved that if A is positive definite, then all the eigenvalues are positive.

Next, assume that the eigenvalues of A are positive. Since the eigenvectors q_i form a basis for \mathbb{R}^n , we can represent any vector as a linear combination of the q_i . Let u = Qc be any nonzero vector in \mathbb{R}^n . Then $u^TAu = c^TQ^TQ\Lambda Q^TQc = c^T\Lambda c = \sum_i \lambda_i c_i^2$. All the λ_i are positive, and at least one of the c_i are nonzero, so $u^TAu > 0$. Thus, we have proved the other direction.

b) The matrix A is normal, so it can be unitarily diagonalized, $A = Q\Lambda Q^{H}$. Thus, $AA^{H} = Q\Lambda \Lambda^{H}Q^{H} = Q\Lambda^{H}\Lambda Q^{H} = A^{H}A$. We can then calculate the condition number:

$$\kappa(A) = \|A\|_2 \|A^{-1}\|_2 = \sqrt{\rho(AA^{H})} \sqrt{\rho(A^{-1}A^{-H})} = \max_{i} |\lambda_i| \max_{i} \frac{1}{|\lambda_i|} = \frac{\max_{i} |\lambda_i|}{\min_{i} |\lambda_i|}.$$

- c) Assume first that A is positive definite. Then A is non-singular, so given a vector $y \neq 0$, we can find a unique $x \neq 0$ so that y = Ax. Thus, $y^T A^{-1} y = x^T A^T x = x^T Ax > 0$. To prove the converse, just substitute $A \leftrightarrow A^{-1}$.
- **d**) Since *A* is normal, we have that $A = Q\Lambda Q^{T}$ with $Q^{T}Q = QQ^{T} = I$. Hence, we can express the Rayleigh quotient as

$$R(x) = \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x} = \frac{x^{\mathrm{T}} Q \Lambda Q^{\mathrm{T}} x}{x^{\mathrm{T}} Q Q^{\mathrm{T}} x}.$$

If we now define $y = Q^{T}x$, we have

$$R = \frac{y^{\mathrm{T}} \Lambda y}{y^{\mathrm{T}} y} = \frac{\sum_{i=1}^{n} \lambda_i y_i^2}{\sum_{i=1}^{n} y_i^2},$$

and using the fact that all the eigenvalues of A are positive, we obtain the bounds

$$R = \frac{\sum_{i=1}^{n} \lambda_i y_i^2}{\sum_{i=1}^{n} y_i^2} \le \frac{\lambda_n \sum_{i=1}^{n} y_i^2}{\sum_{i=1}^{n} y_i^2} = \lambda_n, \qquad R = \frac{\sum_{i=1}^{n} \lambda_i y_i^2}{\sum_{i=1}^{n} y_i^2} \ge \frac{\lambda_1 \sum_{i=1}^{n} y_i^2}{\sum_{i=1}^{n} y_i^2} = \lambda_1.$$

Here, λ_1 is the smallest and λ_n is the largest eigenvalue of A.

a) A is normal if $AA^{H} = A^{H}A$. Here,

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}, \qquad A^{\mathrm{H}} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix},$$

which leads to

$$AA^{\mathrm{H}} = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix}$$
 and $A^{\mathrm{H}}A = \begin{bmatrix} 5 & -1 \\ -1 & 0 \end{bmatrix}$.

Hence, A is not normal.

b) Here, *A* is a lower triangular matrix, and we have the eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 1$ on the diagonal. For the eigenvectors, we have that

$$Av_1 = 2v_1 \implies v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \text{ and } Av_2 = v_2 \implies v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

- c) We see that the eigenvectors are linearly independent, but they are not orthogonal since $v_1^H v_2 \neq 0$.
- **d)** Yes. All the eigenvalues are nondefective, so the eigenvectors form a full set of linearly independent vectors for \mathbb{R}^2 . This implies that A can be diagonalized, i.e. we can write $A = V \Lambda V^{-1}$, where the columns of V are the eigenvectors of A and Λ is a diagonal matrix containing the eigenvalues of A.
- **e)** We rewrite A as

$$A = \underbrace{\frac{1}{2}(A + A^{\mathrm{T}})}_{H} + \underbrace{\frac{1}{2}(A - A^{\mathrm{T}})}_{S},$$

where

$$H^{T} = H$$
 i.e. symmetric,
 $S^{T} = -S$ i.e. skew-symmetric.

Since H is symmetric, we can orthogonally diagonalize it, $H = Q\Lambda Q^{T}$. Hence, for all $u \in \mathbb{R}^{2}$, letting $c = Q^{T}u$,

$$u^{\mathrm{T}}Au = u^{\mathrm{T}}Hu + \underbrace{u^{\mathrm{T}}Su}_{0} = u^{\mathrm{T}}Hu = c^{\mathrm{T}}\Lambda c = \sum_{i} \lambda_{i}c_{i}^{2}.$$

We find that the matrix H is

$$H = \begin{bmatrix} 2 & -1/2 \\ -1/2 & 1 \end{bmatrix},$$

which has eigenvalues $\lambda = (3 \pm \sqrt{2})/2$, which are both positive. Thus, we choose $\alpha = \lambda_{\min}(H) = (3 - \sqrt{2})/2$, which makes

$$u^{\mathrm{T}} A u = \sum_{i} \lambda_{i} c_{i}^{2} \ge \alpha \|c\|_{2}^{2} = \alpha \|u\|_{2}^{2}.$$

- **f**) Yes, this follows from **e**) since $\alpha > 0$.
- **g**) A Schur factorization is a product $A = QRQ^H$ for Q unitary and R upper triangular. From **d**), we know that A can be diagonalized, $A = V\Lambda V^{-1}$, however, V is not unitary, so this is not a Schur factorization. We orthonormalize V using, say, the Gram–Schmidt process, to obtain $V = Q\tilde{R}$, where Q is unitary and \tilde{R} is upper triangular. Substituting this factorization into the diagonalization leads to a Schur decomposition

$$A = QRQ^{H}$$
, where $R = \tilde{R}\Lambda\tilde{R}^{-1}$.

n	Time (s)	Time/n ³		
500	$1.30 \cdot 10^{-2}$	$1.04 \cdot 10^{-10}$		
600	$2.29 \cdot 10^{-2}$	$1.06 \cdot 10^{-10}$		
700	$3.52 \cdot 10^{-2}$	$1.03 \cdot 10^{-10}$		
800	$5.27 \cdot 10^{-2}$	$1.03 \cdot 10^{-10}$		
900	$7.27\cdot10^{-2}$	$1.00 \cdot 10^{-10}$		

Table 1: Two-dimensional Poisson problem with diagonalization method

The Gram-Schmidt process yields

$$\begin{aligned} w_1 &= v_1, & q_1 &= \frac{w_1}{\|w_1\|_2} &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \\ w_2 &= v_2 - (v_2^{\mathrm{H}} q_1) q_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, & q_2 &= \frac{w_2}{\|w_2\|_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{aligned}$$

Thus

$$Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix},$$

giving

$$\begin{split} R &= Q^{\mathrm{H}} A Q \\ &= \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}. \end{split}$$

3 We consider again the Poisson problem

$$-\Delta u = f$$
, in $\Omega = (0,1) \times (0,1)$,
 $u = 0$, on $\partial \Omega$.

and discretize this with the five point formula using a uniform grid spacing, h = 1/n, in each spatial direction. The number of unknowns is therefore $(n-1)^2 \approx n^2$.

- a) i) First we solve the Poisson problem using the diagonalization method. See Table 1.
 - ii) Next, we solve the same problem using LU factorization exploiting sparsity. See Table 2
 - **iii)** Finally, we solve the same problem using full LU factorization without exploiting sparsity. See Table 3.
- **b)** All the methods perform as expected. Note the difference in absolute solution times. The diagonalization method is clearly much better than either of the other methods.
- **c)** For the one-dimensional Laplace operator the continuous eigenfunctions and eigenvalues are (see the note by Rønquist)

$$u_j^*(x) = \sin(j\pi x),$$

 $\lambda_j^* = j^2 \pi^2, \quad j = 1, \dots, \infty.$

\overline{n}	Time (s)	Time/ n^4		
50	$1.55 \cdot 10^{-2}$	$2.47 \cdot 10^{-9}$		
60	$2.97\cdot 10^{-2}$	$2.29 \cdot 10^{-9}$		
70	$5.12 \cdot 10^{-2}$	$2.13 \cdot 10^{-9}$		
80	$8.34 \cdot 10^{-2}$	$2.04 \cdot 10^{-9}$		
90	$1.27 \cdot 10^{-1}$	$1.93 \cdot 10^{-9}$		

Table 2: Two-dimensional Poisson problem with LU factorization exploting sparsity

n	Time (s)	Time/ n^6		
50	0.153	$9.78 \cdot 10^{-12}$		
60	0.404	$8.67 \cdot 10^{-12}$		
70	0.945	$8.03 \cdot 10^{-12}$		
80	2.031	$7.75 \cdot 10^{-12}$		
90	4.026	$7.58 \cdot 10^{-12}$		

Table 3: Two-dimensional Poisson problem with full LU factorization

From the note, we can also see that if we discretize the Laplace operator using a central difference scheme with uniform grid spacing, h = 1/n, we get the matrix $A^{\rm 1D}$ with eigenvalues

$$\lambda_j = \frac{2}{h^2} \left(1 - \cos \left(\frac{j\pi}{n} \right) \right), \quad j = 1, \dots, n - 1.$$

Hence, we expect

$$\lambda_{\min} = \frac{2}{h^2} \left(1 - \cos\left(\frac{\pi}{n}\right) \right) \approx \frac{1}{h^2} \frac{\pi^2}{n^2},$$

$$\lambda_{\max} = \frac{2}{h^2} \left(1 - \cos\left(\frac{(n-1)\pi}{n}\right) \right) \approx \frac{4}{h^2},$$

$$\Downarrow$$

$$\kappa(A^{1D}) = \frac{\lambda_{\max}}{\lambda_{\min}} \approx \frac{4}{\pi^2} n^2.$$

The condition number should scale as $O(n^2)$ in 1D.

d) Consider now the two-dimensional Poisson problem

$$-\Delta u = f$$
, in $\Omega = (0,1) \times (0,1)$,
 $u = 0$, on $\partial \Omega$.

In the continuous case, the eigenfunctions and eigenvalues of the Laplace operator are given as

$$u_{j,k}^*(x,y) = \sin(j\pi x)\sin(k\pi y),$$

$$\lambda_{j,k}^* = j^2\pi^2 + k^2\pi^2 = (j^2 + k^2)\pi^2,$$

$$j = 1,...,\infty, \quad k = 1,...,\infty.$$

These results are obtained simply by using separation of variables.

				_				
n	$\lambda_{\min}(\hat{A}^{\mathrm{1D}})$	$\lambda_{\min}(\hat{A}^{\mathrm{1D}})$	$\kappa(A^{\mathrm{1D}})$		n	$\lambda_{\min}(\hat{A}^{\mathrm{2D}})$	$\lambda_{\min}(\hat{A}^{\mathrm{2D}})$	$\kappa(A^{\mathrm{2D}})$
10	$8.10 \cdot 10^{-2}$	3.92	48.37]	10	$1.62 \cdot 10^{-1}$	7.84	48.37
20	$2.23 \cdot 10^{-2}$	3.98	178.06	2	20	$4.47\cdot10^{-2}$	7.96	178.06
30	$1.03 \cdot 10^{-2}$	3.99	388.81	3	30	$2.05 \cdot 10^{-2}$	7.98	388.81
40	$5.87 \cdot 10^{-3}$	3.99	680.62	4	40	$1.17 \cdot 10^{-2}$	7.99	680.62

(a) One dimension

(b) Two dimensions

Table 4: Condition numbers

Again, we discretize the Poisson problem using the five-point formula, and get the discrete Laplace operator (or matrix), $A^{\rm 2D}$. The eigenvalues of $A^{\rm 2D}$ are

$$\lambda_{j,k} = \frac{2}{h^2} \left(1 - \cos\left(\frac{j\pi}{n}\right) \right) + \frac{2}{h^2} \left(1 - \cos\left(\frac{k\pi}{n}\right) \right),$$

so we expect that

$$\begin{split} \lambda_{\min} &= \frac{2}{h^2} \bigg(1 - \cos \bigg(\frac{\pi}{n} \bigg) \bigg) + \frac{2}{h^2} \bigg(1 - \cos \bigg(\frac{\pi}{n} \bigg) \bigg) \approx \frac{2}{h^2} \frac{\pi^2}{n^2}, \\ \lambda_{\min} &= \lambda_{j,k} = \frac{2}{h^2} \bigg(1 - \cos \bigg(\frac{(n-1)\pi}{n} \bigg) \bigg) + \frac{2}{h^2} \bigg(1 - \cos \bigg(\frac{(n-1)\pi}{n} \bigg) \bigg) \approx \frac{8}{h^2}, \\ & \downarrow \\ \kappa(A^{\text{2D}}) &= \frac{\lambda_{\max}}{\lambda_{\min}} \approx \frac{4}{\pi^2} n^2. \end{split}$$

We compute the maximum and minimum eigenvalues for the matrices $\hat{A}^{1D} = h^2 A^{1D}$ and $\hat{A}^{2D} = h^2 A^{2D}$ by using the command eig in Matlab. The condition number is found by the use of cond. See Table 4.

We observe that the condition number κ is the same for one and two dimensions. We also get the expected behavior for the minimum and maximum eigenvalues.