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Solutions to exercise set 3

1 a) We are given the matrix

A =
1 −6 0

6 2 3
0 3 2

 .

We may here use Gershgorin’s theorem to estimate the eigenvalues of A. This theorem
states that all the eigenvalues of an n ×n matrix A are located in one of the closed
discs of the complex plane centered in ai ,i having radius

ri =
j=n∑
j=1
j 6=i

|ai , j |, i = 1, . . . ,n.

See Saad, Theorem 4.6. For our matrix, this is illustrated in Figure 1. The shaded
square encapsulates all the circles, and thus also the eigenvalues. For our given
matrix, the spectrum is σ(A) = {2.328,1.336±5.196i}. We see that this is in agreement
with the estimate.

b) An MR iteration will converge if A is positive-definite. This is equivalent to A+ AT

being positive-definite. We have that

A+ AT =
2 0 0

0 4 6
0 6 4


and this matrix has spectrum σ(A) = {−2,2,10}. Since one of the eigenvalues is
negative, A cannot be positive-definite. Thus, the MR iteration is not guaranteed to
converge.
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Figure 1: Exact and estimated eigenvalues of A.
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Solutions to exercise set 3

2 We revisit the one-dimensional Poisson problem of exercise set 1, and we consider solving
the discretized problem using Jacobi -, steepest descent (SD) -, and minimum residual
(MR) iteration.

a) In general, if we have an error/residual behaviour given by

‖ek‖ = ρk‖e0‖,

so

log
‖ek‖
‖e0‖

= k logρ.

For this exercise we want to obtain an error/residual reduction by 10−5 such that
log(‖ek‖/‖e0‖) =−5, i.e.,

−5 = k logρ. (1)

We will need the following useful approximations based on Maclaurin expansions:

cos(x) ≈ 1− 1
2 x2,

log(1+x) ≈ x,

(1+x)1/2 ≈ 1+ 1
2 x.

Jacobi. For this case we have that ρ is the spectral radius of the iteration matrix, so
ρ = cos(π/n) ≈ 1−π2/2n2. From (1) and the approximation of the logarithm, we find
that k ≈ 10n2/π2.

Steepest descent. From the lectures, we know that

‖ek‖A ≤ ρk‖e0‖A ,

where

ρ = λmax −λmin

λmax +λmin
= κ−1

κ+1
≈ 1− 2

κ

for large values of κ = λmax/λmin, the condition number based on the Euclidean
norm of A. From (1) and the approximation of the logarithm, we find that k ≈ 5κ/2.
We also have that

κ= λmax

λmin
=

2
h2

(
1−cos

( (n−1)π
n

))
2

h2

(
1−cos

(
π
n

)) ≈ 2

π2/2n2 = 4n2

π2 =⇒ k ≈ 10n2

π2 . (2)

b) We now consider MR iteration for the same problem, and wish to reduce the initial
residual with 5 orders of magnitude. In this case,

‖rk‖2 ≤ ρk‖r0‖2

with

ρ =
(
1− µ2

σ2

)1/2

,

where

µ=λmin

(
A+ AT

2

)
, σ= ‖A‖2.
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Method Ax αx and x + y xTx

J 1 1 ?
SD 1 4 2
MR 1 4 2

(a) Computational cost

Method A x

J 1 2
SD 1 3
MR 1 3

(b) Memory requirement

Table 1: One iteration of Jacobi, SD and MR

In our case, A is symmetric and positive-definite (SPD), and we thus get the simplified
expressions

µ=λmin(A), σ=λmax(A).

Hence,

ρ =
(
1− λ2

min

λ2
max

)1/2

=
(
1− 1

κ2

)1/2

≈ 1− 1

2κ2 .

From (1) and the approximation of the logarithm, we find that k ≈ 10κ2. We insert
the expression for the condition number from (2), and find

k ≈ 160n4

π4 .

We may now compare the value for k for Jacobi, SD and MR, and observe that

kSD/J

kMR
≈ 1

4κ
= π2

16n2 .

Here, kSD/J is the number of iterations for Jacobi and steepest descent to reduce
the error by 5 orders of magnitude, while kMR is the number of iterations for MR to
reduce the initial residual by the same amount. Since we expect κ to be large for large
n, this difference is significant!

c) We now discuss the computational cost for the three iterative methods. In Table 1a
we have listed the number of matrix-vector operations (vector addition and scalar
multiplication) and the number of inner-products for one iteration of each method.
How many floating point operations this is equivalent to, depends on the matrix
A. For our Poisson problem, A is tridiagonal, and a matrix-vector product can be
done in O(n) operations. (If A was a full matrix this would require O(n2) operations.)
The vector operations and inner-products also use O(n) operations, so the number
of operations for one iteration for all three methods is N 1

ops ∼ O(n). Note that in a
Jacobi method there is no error or residual estimate available, so the question mark
in the last column is for potential error/residual estimation.

In Table 1b we indicate the memory requirement. All methods need to store enough
information about A to be able to perform matrix-vector products. The sparsity of A
should here be exploited, and we thus only need to store the non-zero entries, which
in this case is O(n) (in fact, the non-zero entries in each row are the same). Both SD
and MR need to store three vectors x, p and r . For Jacobi we need to store x as well
as a working array. Thus, the memory requirement is O(n) for all methods.

We now consider the cost for k iterations. The memory requirement remains the
same, while the number of operations is given by

N tot
ops = kN 1

ops,
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Method N tot
ops

J n3

SD n3

MR n5

Table 2: Number of floating point operations for solving the one-dimensional Poisson problem
using Jacobi, SD and MR.

where N 1
ops is the number of floating point operations in each iteration. Using the

results from a) and b), we find the estimates in Table 2.

d) Of the three iterative methods considered here, MR is the most general one, since the
requirement is only that A is positive-definite. However, we see that this method is
much slower than the other two for the one-dimensional Poisson problem. Steepest
descent is guaranteed to converge as long as A is SPD, while Jacobi iteration has an
even stronger requirement, namely that the spectral radius of the iteration matrix
must be less than 1 (which is not the case for all SPD matrices). For our particular
Poisson problem, Jacobi is a little bit faster than the steepest descent, while Jacobi
and steepest descent are both much faster than MR iteration.

In conclusion, a method for more general problems is typically slower than a spe-
cialized method, and for our Poisson problem, MR iteration is definitely not a good
idea. We also note here that we have compared error reduction by 5 orders of magni-
tude for the first two methods, and residual reduction for the MR method. This is
obviously not the same, but we assume that they are comparable and show the same
behaviour.
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