

TMA4205 Numerical Linear Algebra Fall 2013

Solutions to exercise set 4

1 Saad, Exercise 5.3 We first consider the system Ax = b with $\mathcal{L} = A\mathcal{K}$. Let

$$\mathcal{K} = \operatorname{span}\{v_1, \dots, v_m\},\$$
$$V_m = [v_1 | \dots | v_m] \in \mathbb{R}^{n \times m}.$$

In the first case, the approximate solution \tilde{x} to Ax = b must satisfy

$$\tilde{x} - x_0 \in \mathcal{K},$$
$$(AV_m)^{\mathrm{T}} (b - A\tilde{x}) = 0.$$

Next, we consider the system $A^{T}Ax = A^{T}b$ with $\mathcal{L} = \mathcal{K}$ (*orthogonal* projection). The approximate solution must now satisfy

$$\tilde{x} - x_0 \in \mathcal{K},$$

$$V_m^{\mathrm{T}}(A^{\mathrm{T}}b - A^{\mathrm{T}}A\tilde{x}) = 0$$

$$\downarrow$$

$$(AV_m)^{\mathrm{T}}(b - A\tilde{x}) = 0.$$

Hence, we get the same system $(AV_m)^T A \tilde{x} = (AV_m)^T b$ or $(AV_m)^T A \delta = (AV_m)^T r_0$, where $\tilde{x} = x_0 + \delta$. This shows that the two methods are equivalent.

2 We use N = 100, $v = e_1$, and m = 10, 20, 30, 40, 50, as suggested. The results for both **a**) and **b**) are reported in Table 1, where we report the errors $||V_m^T A V_m - H_m||_{\infty}$ and $||V_m^T V_m - I_m||_{\infty}$ after m = 10, 20, 30, 40, 50 iterations for Gram–Schmidt (GS) orthogonalization and modified Gram–Schmidt (MGS) orthogonalization. From the table we conclude that MGS performs slightly better than GS in this case.

	GS		MGS	
т	$\ V_m^{\mathrm{T}}AV_m - H_m\ _{\infty}$	$\ V_m^{\mathrm{T}}V_m - \mathbf{I}_m\ _{\infty}$	$\ V_m^{\mathrm{T}}AV_m - H_m\ _{\infty}$	$\ V_m^{\mathrm{T}}V_m - \mathrm{I}_m\ _{\infty}$
10	$2.90 \cdot 10^{-13}$	$3.91 \cdot 10^{-14}$	$9.69 \cdot 10^{-14}$	$1.92 \cdot 10^{-14}$
20	$1.33 \cdot 10^{-11}$	$1.72 \cdot 10^{-12}$	$3.89 \cdot 10^{-12}$	$7.73 \cdot 10^{-13}$
30	$2.04 \cdot 10^{-8}$	$2.64 \cdot 10^{-9}$	$5.98\cdot10^{-9}$	$1.19\cdot10^{-9}$
40	$3.55 \cdot 10^{-3}$	$4.61\cdot10^{-4}$	$1.04 \cdot 10^{-3}$	$2.07\cdot 10^{-4}$
50	80.4	8.04	19.2	2.41

Table 1: MGS is a little bit better than GS.
--

- **a)** Since *A* is SPD, it follows from Exercise 2, Problem **1c**), that A^{-1} is also SPD. Thus, it can be used to define the A^{-1} -norm in the same way as the SPD matrix *A* defines the *A*-norm.
 - **b**) We are given the system Ax = b, where *A* is SPD. Then, for all $\tilde{x} \in \mathbb{R}^n$,

$$\begin{split} \|x - \tilde{x}\|_{A}^{2} &= (x - \tilde{x})^{\mathrm{T}} A(x - \tilde{x}) \\ &= (x - \tilde{x})^{\mathrm{T}} A A^{-1} A(x - \tilde{x}) \\ &= (Ax - A\tilde{x})^{\mathrm{T}} A^{-1} (Ax - A\tilde{x}) \\ &= (b - A\tilde{x})^{\mathrm{T}} A^{-1} (b - A\tilde{x}) \\ &= \tilde{r}^{\mathrm{T}} A^{-1} \tilde{r} \\ &= \|\tilde{r}\|_{A^{-1}}^{2}. \end{split}$$

Hence,

$$x_m = \operatorname*{argmin}_{\tilde{x} \in \mathcal{K}_m} \|x - \tilde{x}\|_A^2 = \operatorname*{argmin}_{\tilde{x} \in \mathcal{K}_m} \|\tilde{r}\|_{A^{-1}}^2.$$

c) The functional $f: \mathbb{R}^n \to \mathbb{R}$ is given by $f(w) = \frac{1}{2}w^T A w - w^T b$. This functional attains a minimum since *A* is SPD. Starting at x_j and minimizing *f* along the search direction p_j gives

$$\begin{split} f(x_j + \alpha p_j) &= \frac{1}{2} (x_j + \alpha p_j)^{\mathrm{T}} A(x_j + \alpha p_j) - (x_j + \alpha p_j)^{\mathrm{T}} b, \\ &= \frac{1}{2} x_j^{\mathrm{T}} A x_j + \alpha x_j^{\mathrm{T}} A p_j + \frac{1}{2} \alpha^2 p_j^{\mathrm{T}} A p_j - x_j^{\mathrm{T}} b - \alpha p_j^{\mathrm{T}} b. \end{split}$$

At the minimum,

$$0 = \frac{\mathrm{d}f}{\mathrm{d}\alpha} = x_j^{\mathrm{T}}Ap_j + \alpha p_j^{\mathrm{T}}Ap_j - p_j^{\mathrm{T}}b$$
$$= -p_j^{\mathrm{T}}r_j + \alpha p_j^{\mathrm{T}}Ap_j$$
$$\downarrow$$
$$\alpha = \frac{(p_j, r_j)}{(Ap_j, p_j)}.$$

But

$$p_{j} = r_{j} + \beta_{j-1} p_{j-1}$$

= $r_{j} + \beta_{j-1} (r_{j-1} + \beta_{j-2} p_{j-2})$
:
= $r_{j} + \sum_{i=0}^{j-1} c_{i} r_{i}$,

where c_i are constants. Hence, due to the orthogonality of the residuals r_i , we get that $(p_j, r_j) = (r_j, r_j)$, which in turn gives us the result

$$\alpha = \frac{(r_j, r_j)}{(Ap_j, p_j)}.$$