

TMA4205 Numerical Linear Algebra Fall 2013

Solutions to exercise set 6

a) From the Householder process, we get the QR factorization

$$Q = \begin{bmatrix} -1/\sqrt{3} & -1/\sqrt{15} & 2/\sqrt{15} & -4/(5\sqrt{2}) \\ 1/\sqrt{3} & -2/\sqrt{15} & -1/\sqrt{15} & 5/(5\sqrt{2}) \\ 0 & 3/\sqrt{15} & -1/\sqrt{15} & 3/(5\sqrt{2}) \\ 1/\sqrt{3} & 1/\sqrt{15} & 3/\sqrt{15} & 0 \end{bmatrix}, \qquad R = \begin{bmatrix} \sqrt{3} & -1/\sqrt{3} & 0 \\ 0 & 5/\sqrt{15} & -3/\sqrt{15} \\ 0 & 0 & 6/\sqrt{15} \\ 0 & 0 & 0 \end{bmatrix}$$

b) We find that

$$A^{\mathrm{T}}A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}.$$

By solving det($A^{T}A - \lambda I$) = 0, we find that the eigenvalues are

$$\lambda_1 = 4, \qquad \lambda_2 = 3, \qquad \lambda_3 = 1.$$

The corresponding eigenvectors x_i are obtained by finding solutions to $(A - \lambda_i I)x_i = 0$. The solutions are

$$x_1 = [1, -1, 1]^{\mathrm{T}}, \qquad x_2 = [1, 0, -1]^{\mathrm{T}}, \qquad x_3 = [1, 2, 1]^{\mathrm{T}}.$$

c) We want to find the SVD $A = U\Sigma V^{H}$. The singular values of *A* are the square roots of the eigenvalues of $A^{T}A$, sorted in descending order, so

 $\sigma_1 = 2, \qquad \sigma_2 = \sqrt{3}, \qquad \sigma_3 = 1.$

The columns of *V* are obtained by normalizing the eigenvectors x_i :

$$v_1 = \frac{1}{\sqrt{3}} [1, -1, 1]^{\mathrm{T}}, \quad v_2 = \frac{1}{\sqrt{2}} [1, 0, -1]^{\mathrm{T}}, \quad v_3 = \frac{1}{\sqrt{6}} [1, 2, 1]^{\mathrm{T}}.$$

The first three columns of *U* are given by $u_i = \frac{1}{\sigma_i} A v_i$, so

$$u_1 = \frac{1}{\sqrt{3}} [0, 1, -1, 1]^{\mathrm{T}}, \qquad u_2 = \frac{1}{\sqrt{6}} [-2, 1, 1, 0]^{\mathrm{T}}, \qquad u_3 = \frac{1}{\sqrt{6}} [0, -1, 1, 2]^{\mathrm{T}}.$$

The final column of *U* must be orthogonal to the first three and of unit length. We choose

$$u_4 = \frac{1}{\sqrt{3}} [1, 1, 1, 0]^{\mathrm{T}}$$

In conclusion, the SVD is

$$A = \begin{bmatrix} 0 & -2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{6} & 1/\sqrt{3} \\ -1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{bmatrix}.$$

d)

 $\|A\|_{1} = \max \text{ column sum} = 3,$ $\|A\|_{2} = \sigma_{1} = 2,$ $\|A\|_{\infty} = \max \text{ row sum} = 2,$ $\|A\|_{F} = \sqrt{\operatorname{tr}(A^{H}A)} = 2\sqrt{2}.$

a) Let $Ax = \lambda x$. Then

$$(A - \mu \mathbf{I})x = Ax - \mu x = (\lambda - \mu)x,$$

so $\lambda - \mu$ is an eigenvalue of $A - \mu I$.

- **b)** This statement is false. To see this, let A = I. Then $\lambda = 1$ is an eigenvalue of A, but -1 is not.
- c) Let $Ax = \lambda x$, where A is real. Then simply take the complex conjugate of this equation, to get

 $A\bar{x} = \bar{\lambda}\bar{x}$,

so \bar{x} is an eigenvalue of *A*.

d) Let $Ax = \lambda x$, where *A* is nonsingular. Then $\lambda \neq 0$, so we can divide by λ and multiply by A^{-1} from the left to obtain

$$A^{-1}x = \lambda^{-1}x.$$

Thus λ^{-1} is an eigenvalue of A^{-1} .

e) This statement is false. For example, all triangular matrices with zeros on the diagonal only have 0-eigenvalues. One such matrix is

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

f) Since $A^{H} = A$, we can unitarily diagonalize $A = QAQ^{H}$. Then

$$\sigma = \sqrt{\lambda(A^{\mathrm{H}}A)} = \sqrt{\lambda(Q\Lambda^2 Q^{\mathrm{H}})} = \sqrt{\lambda(A)^2} = |\lambda|.$$

g) Let $A = X\Lambda X^{-1}$. If all the eigenvalues are equal to λ , then $\Lambda = \lambda I$, so

$$A = X\lambda I X^{-1} = \lambda I,$$

which is diagonal.