Norwegian University of Science and Technology
Department of Mathematical
Sciences
,

TMA4205 Numerical Linear Algebra Fall 2013

Solutions to exercise set 6

1 a) From the Householder process, we get the QR factorization

$$
Q=\left[\begin{array}{rrrr}
-1 / \sqrt{3} & -1 / \sqrt{15} & 2 / \sqrt{15} & -4 /(5 \sqrt{2}) \\
1 / \sqrt{3} & -2 / \sqrt{15} & -1 / \sqrt{15} & 5 /(5 \sqrt{2}) \\
0 & 3 / \sqrt{15} & -1 / \sqrt{15} & 3 /(5 \sqrt{2}) \\
1 / \sqrt{3} & 1 / \sqrt{15} & 3 / \sqrt{15} & 0
\end{array}\right], \quad R=\left[\begin{array}{rrr}
\sqrt{3} & -1 / \sqrt{3} & 0 \\
0 & 5 / \sqrt{15} & -3 / \sqrt{15} \\
0 & 0 & 6 / \sqrt{15} \\
0 & 0 & 0
\end{array}\right] .
$$

b) We find that

$$
A^{\mathrm{T}} A=\left[\begin{array}{rrr}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right] .
$$

By solving $\operatorname{det}\left(A^{\mathrm{T}} A-\lambda \mathrm{I}\right)=0$, we find that the eigenvalues are

$$
\lambda_{1}=4, \quad \lambda_{2}=3, \quad \lambda_{3}=1 .
$$

The corresponding eigenvectors x_{i} are obtained by finding solutions to $\left(A-\lambda_{i} \mathrm{I}\right) x_{i}=0$. The solutions are

$$
x_{1}=[1,-1,1]^{\mathrm{T}}, \quad x_{2}=[1,0,-1]^{\mathrm{T}}, \quad x_{3}=[1,2,1]^{\mathrm{T}} .
$$

c) We want to find the SVD $A=U \Sigma V^{\mathrm{H}}$. The singular values of A are the square roots of the eigenvalues of $A^{\mathrm{T}} A$, sorted in descending order, so

$$
\sigma_{1}=2, \quad \sigma_{2}=\sqrt{3}, \quad \sigma_{3}=1 .
$$

The columns of V are obtained by normalizing the eigenvectors x_{i} :

$$
v_{1}=\frac{1}{\sqrt{3}}[1,-1,1]^{\mathrm{T}}, \quad v_{2}=\frac{1}{\sqrt{2}}[1,0,-1]^{\mathrm{T}}, \quad \nu_{3}=\frac{1}{\sqrt{6}}[1,2,1]^{\mathrm{T}} .
$$

The first three columns of U are given by $u_{i}=\frac{1}{\sigma_{i}} A \nu_{i}$, so

$$
u_{1}=\frac{1}{\sqrt{3}}[0,1,-1,1]^{\mathrm{T}}, \quad u_{2}=\frac{1}{\sqrt{6}}[-2,1,1,0]^{\mathrm{T}}, \quad u_{3}=\frac{1}{\sqrt{6}}[0,-1,1,2]^{\mathrm{T}} .
$$

The final column of U must be orthogonal to the first three and of unit length. We choose

$$
u_{4}=\frac{1}{\sqrt{3}}[1,1,1,0]^{\mathrm{T}} .
$$

In conclusion, the SVD is

$$
A=\left[\begin{array}{rrrr}
0 & -2 / \sqrt{6} & 0 & 1 / \sqrt{3} \\
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
-1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6} & 0
\end{array}\right]\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & \sqrt{3} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6}
\end{array}\right] .
$$

d)

$$
\begin{aligned}
\|A\|_{1} & =\max \text { column sum }=3 \\
\|A\|_{2} & =\sigma_{1}=2 \\
\|A\|_{\infty} & =\max \text { row sum }=2 \\
\|A\|_{\mathrm{F}} & =\sqrt{\operatorname{tr}\left(A^{\mathrm{H}} A\right)}=2 \sqrt{2}
\end{aligned}
$$

2 a) Let $A x=\lambda x$. Then

$$
(A-\mu \mathrm{I}) x=A x-\mu x=(\lambda-\mu) x
$$

so $\lambda-\mu$ is an eigenvalue of $A-\mu \mathrm{I}$.
b) This statement is false. To see this, let $A=\mathrm{I}$. Then $\lambda=1$ is an eigenvalue of A, but -1 is not.
c) Let $A x=\lambda x$, where A is real. Then simply take the complex conjugate of this equation, to get

$$
A \bar{x}=\bar{\lambda} \bar{x},
$$

so \bar{x} is an eigenvalue of A.
d) Let $A x=\lambda x$, where A is nonsingular. Then $\lambda \neq 0$, so we can divide by λ and multiply by A^{-1} from the left to obtain

$$
A^{-1} x=\lambda^{-1} x
$$

Thus λ^{-1} is an eigenvalue of A^{-1}.
e) This statement is false. For example, all triangular matrices with zeros on the diagonal only have 0 -eigenvalues. One such matrix is

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

f) Since $A^{\mathrm{H}}=A$, we can unitarily diagonalize $A=Q \Lambda Q^{\mathrm{H}}$. Then

$$
\sigma=\sqrt{\lambda\left(A^{\mathrm{H}} A\right)}=\sqrt{\lambda\left(Q \Lambda^{2} Q^{\mathrm{H}}\right)}=\sqrt{\lambda(A)^{2}}=|\lambda|
$$

g) Let $A=X \Lambda X^{-1}$. If all the eigenvalues are equal to λ, then $\Lambda=\lambda \mathrm{I}$, so

$$
A=X \lambda \mathrm{I} X^{-1}=\lambda \mathrm{I},
$$

which is diagonal.

