

TMA4205 Numerical Linear Algebra Fall 2014

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 2

- 1 We shall study some properties of positive definite matrices.
 - a) Prove that the following two statements are equivalent for a normal matrix $A \in \mathbb{R}^{n \times n}$:
 - The matrix *A* is positive definite.
 - All the eigenvalues of *A* are positive.
 - **b)** Prove that the condition number based on the Euclidean norm of a normal matrix *A*, can be written as

$$\kappa(A) = \frac{\max_{i} |\lambda_{i}|}{\min_{i} |\lambda_{i}|},$$

where λ_i are the eigenvalues of A.

- c) Prove that a matrix A is positive definite if and only if A^{-1} is positive definite.
- **d)** Let $A \in \mathbb{R}^{n \times n}$ and let $x \in \mathbb{R}^n$. The expression

$$R(x) = \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x}$$

is called the Rayleigh quotient of A. If A is normal and positive definite, show that

$$\lambda_1 \le R(x) \le \lambda_n \quad \text{for all } x \in \mathbb{R}^n \setminus \{0\},$$

where λ_1 and λ_n are the smallest and largest eigenvalue of A respectively.

2 Consider the matrix

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}.$$

- a) Is A normal?
- **b)** Find the eigenvalues and eigenvectors of A.
- c) Are the eigenvectors linearly independent? Are they orthogonal?
- **d)** Can A be diagonalized?
- **e)** Show that there exists a constant $\alpha > 0$ so that $u^T A u \ge \alpha \|u\|_2^2$ for all $u \in \mathbb{R}^2$. What is the largest possible value for α ?
- **f**) Is *A* positive definite?
- **g)** Find a Schur factorization for *A*.

3 We consider again the Poisson problem

$$-\Delta u = f$$
, in $\Omega = (0,1) \times (0,1)$,
 $u = 0$, on $\partial \Omega$.

We discretize the system on a uniform grid with step-size h = 1/n in each direction.

- **a)** Solve the resulting system of linear equations in MATLAB with three different methods:
 - i) The diagonalization method discussed in Einar Rønquist's note.
 - ii) LU-factorization with sparse matrices.
 - iii) Full LU-factorization without sparse matrices.
- **b)** Do the timings scale as expected?
- c) Calculate the Euclidean condition number $\kappa(A)$ of the discrete Laplacian A for various different values of n. How does $\kappa(A)$ scale with n?
- **d)** How does $\kappa(A)$ scale for the one-dimensional Laplacian? Compare these results with the results from question **c**).