

TMA4205 Numerical Linear Algebra Fall 2014

Exercise set 4

1 Saad, Exercise 5.3 In Section 5.3.3, it was shown that using a one-dimensional projection method with $\mathcal{K} = \operatorname{span}\{A^{\mathrm{T}}r\}$ and $\mathcal{L} = \operatorname{span}\{AA^{\mathrm{T}}r\}$ is equivalent to using the steepest descent method on the normal equations $A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$.

Show that an *orthogonal* projection method for $A^{T}Ax = A^{T}b$ with search space \mathcal{K} is equivalent to applying a projection method onto \mathcal{K} orthogonally to $\mathcal{L} = A\mathcal{K}$ for the problem Ax = b.

- 2 Algorithm 6.1 in Saad is implemented in the MATLAB-function arnoldi_gs.m. This algorithm constructs an orthogonal basis for the Krylov subspace $\mathcal{K}_m(A, v)$ based on a classical Gram–Schmidt procedure. Test this function on the matrix A generated by poisson2.m (use sparse matrices) for different values of m and $N = n^2$. For instance, choose N = 100, $v = e_1$, and m = 10, 20, 30, 40.
 - **a)** Test to what extent the relation $V_m^T A V_m = H_m$ from Proposition 6.5 in Saad is fulfilled. Also check if the vectors v_1, \ldots, v_m really are orthonormal, i.e. check whether $V_m^T V_m = I_m$.
 - **b)** Modify the function arnoldi_gs.m such that it uses modified Gram–Schmidt. Repeat the experiments from the previous question.
- 3 Implement a Matlab program for finding an orthogonal basis for the Krylov subspace $\mathcal{K}_m(A, v)$ in a "naïve" fashion. That is, given A, v, first generate an $n \times m$ matrix K with $K_{*1} = v/||v||_2$ and $K_{*i} = AK_{*i-1}/||AK_{*i-1}||_2$ of normalized vectors, which span $\mathcal{K}_m(A, v)$. Then find a "tall" QR-factorization of $K = V_m R_m$; this produces an orthogonal basis $V_m = [v_1, ..., v_m]$ for $\mathcal{K}_m(A, v)$.

Use the matrix A generated by poisson2.m (use sparse matrices). Take $N = n^2 = 100$, m = 50, $v = e_1$.

Compute the rank of the matrices *K* and R_m ; do they predict the dimension of $\mathcal{K}_m(A, \nu)$ correctly? Plot the absolute values of the diagonal elements in *R* on a logarithmic scale.

4 Implement Householder reflection-based Arnoldi iteration arnoldi_h.m in Matlab with the same interface as arnoldi_gs.m (see Algorithm 6.3 in Saad). Repeat the numerical experiment of the exercise 2a) and compare the results.