

TMA4205 Numerical Linear Algebra Fall 2014

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 5

- Assume that a real matrix A is anti-symmetric, that is, $A^{T} = -A$. Explain the structure of the Hessenberg matrix H_m resulting from Arnoldi process in this case. Explain how this structure can be utilized for performing Arnoldi process efficiently in this case.
- **a)** If *A* is symmetric and positive definite (SPD), show that A^{-1} can be used to define a norm on \mathbb{R}^n ,

$$||v||_{A^{-1}} = (v^{\mathrm{T}}A^{-1}v)^{1/2}$$

- **b)** We know that the conjugate gradient (CG) method will minimize the error in A-norm over all elements in the Krylov subspace $\mathcal{K}_m(A, r_0)$. Show that the algorithm also, in each iteration, will minimize the associated residual in A^{-1} -norm.
- **c)** Each update of the solution in CG can be expressed as $x_{j+1} = x_j + \alpha_j p_j$, where $\alpha_j = (r_j, r_j)/(Ap_j, p_j)$ (see Algorithm 6.18 in Saad). Show that α_j is optimal in the sense that it minimizes the functional $f(w) = \frac{1}{2} w^T A w w^T b$, $f: \mathbb{R}^n \to \mathbb{R}$, along the search direction p_j .
- 3 Saad, Exercise 6.4.