

TMA4205 Numerical Linear Algebra Fall 2014

Exercise set 6

1 Consider a two-diagonal matrix $A \in \mathbb{R}^{n \times n}$

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & 1 \end{pmatrix},$$

and let e_i denote the *i*th canonical basis vector in \mathbb{R}^n . Let $b = e_1$, $x_0 = 0$.

- **a)** Verify that *A* is non-singular and find $x^* \in \mathbb{R}^n$ solving the system Ax = b.
- **b**) Compute the residual r_0 and prove that $K_m(A, r_0) = \operatorname{span}\langle e_1, \dots, e_m \rangle$, $1 \le m \le n$.
- c) Show that any Krylov subspace method for this problem starting from x_0 must satisfy the lower error bound $||x_m x^*||_2^2 \ge n m$, $0 \le m \le n$. Show that a similar error bound (up to a constant C_n depending on n) is satisfied by the residuals: $||r_m||_2^2 \ge C_n(n-m)$.
- **d)** Let n = 5. Using the optimality property of GMRES

$$\|r_m\|_2 = \min_{\substack{x \in x_0 + \mathcal{K}_m(A, r_0) \\ \tilde{p}_m \in \mathbb{P}_m; \tilde{p}_m(0) = 1}} \|b - Ax\|_2 = \min_{p_{m-1} \in \mathbb{P}_{m-1}} \|[I - Ap_{m-1}(A)]r_0\|_2$$

numerically (using Matlab) find the polynomials $\tilde{p}_i(t)$, i = 1, ..., 5 and plot them on the same graph.

Finally, numerically compute $\|\tilde{p}_i(A)\|_2$ and $\|r_i\|_2 = \|\tilde{p}_i(A)r_0\|_2$.

- e) Repeat the previous point, but for the matrix $(A + A^T)/2$. Compute the spectrum of *A* (respectively, $(A + A^T)/2$) and compare the behaviour of the minimal polynomials. Explain why eigenvalue-based error bounds for Krylov subspace methods do not apply to *A*.
- 2 Assume that $A \in \mathbb{R}^{n \times n}$ is a diagonalizable non-singular matrix with real positive eigenvalues distributed on an interval $0 < \lambda_{\min} \le \lambda_i \le \lambda_{\max}$, i = 1, ..., n 1 and one "very different" (for example negative, or very small/very large) eigenvalue $0 \ne \lambda_n = \overline{\lambda} \notin [\lambda_{\min}, \lambda_{\max}]$.

Construct an upper estimate for the quantity $||r_m||_2/||r_0||_2$ after m > 1 iterations of GMRES using the following idea: take $\tilde{p}_m(\lambda) = a_m C_{m-1}(t(\lambda))(\lambda - \bar{\lambda})$, where a_m is the renormalization constant such that $\tilde{p}_m(0) = 1$, C_{m-1} is the Chebyshev polynomial of degree m - 1, and $t : [\lambda_{\min}, \lambda_{\max}] \rightarrow [-1, 1]$ is an affine map.

Conclude that at least in the case of normal *A* and $|\bar{\lambda}| >> \max{\lambda_{\min}, \lambda_{\max}}$ we can expect that the Krylov method requires at most one additional iteration to obtain similar accuracy as the method applied to a matrix with eigenvalues in $[\lambda_{\min}, \lambda_{\max}]$.

3 Show that both CG and GMRES are scaling independent. That is, when applied to a system $(\delta A)x = \delta b$ for some $\delta \in \mathbb{R} \setminus \{0\}$ ($\delta > 0$ in the case of CG) they produce exactly the same sequence of iterates in exact arithmetics. (Of course since the residual vectors will be scaled by δ this may affect stopping criteria of the methods.)