Contact during exam:
Elena Celledoni, tlf. 93541

EXAM IN TMA4205 NUMERICAL LINEAR ALGEBRA

Friday December 8, 2006
Time: 09:00-13:00

Aids: A - Alle printed and hand written aids are allowed.
All calculators are allowed.

Problem 1

a) Show that the inverse of the matrix

$$
I-\mathbf{u v}^{T}
$$

where I is the $n \times n$ identity matrix and $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$ and $\mathbf{v}^{T} \mathbf{u} \neq 1$, is of the type

$$
I+\gamma \mathbf{u v}^{T}
$$

Find γ.
b) Estimate the condition number $\mathcal{K}_{2}\left(I-\mathbf{u v}^{T}\right)$ by using $\|\mathbf{u}\|_{2}$ and $\|\mathbf{v}\|_{2}$. Suppose $\mathbf{v}^{T} \mathbf{u} \neq 1$.
c) Suppose that we are solving the $n \times n$ linear system

$$
A \mathbf{x}=\mathbf{b}, \quad A=B-\mathbf{w} \mathbf{z}^{T}, \quad \mathbf{z} \in \mathbf{R}^{n}, \mathbf{w}=B \mathbf{z}
$$

where B stems from the discretization of a Laplacian, for instance, by the finite difference or the finite element method. Suppose that n is large, that B is invertertible, and that we can use a multigrid V- or W-cycle for efficient solution of linear systems of the form $B \mathbf{y}=\mathbf{c}$. We shall therefore use B^{-1} as preconditioner in our problem.

Find the conditions that \mathbf{z} must fulfill in order to guarantee the convergence of the conjugate gradient method when applied to the preconditioned system

$$
B^{-1} A \mathbf{x}=B^{-1} \mathbf{b}
$$

Suppose that $\|\mathbf{z}\|_{2} \leq 0.5$, and use the convergence estimate for the conjugate gradient algorithm and the estimate of $K_{2}\left(I-\mathbf{z z}^{T}\right)$ for finding the minimal number of iterations necessary to guarantee that

$$
\frac{\left\|\mathbf{x}-\mathbf{x}_{m}\right\|_{B^{-1} A}}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{B^{-1} A}} \leq 10^{-3}
$$

d) Use the result from \mathbf{a}) and find an algorithm for solving $A \mathbf{x}=\mathbf{b}$ that works for every \mathbf{z} and \mathbf{w} such that A is invertible.
e) Suppose that B is an $n \times n$ matrix that stems from a discretization of the Helmholtz equation with periodic boundary conditions, i.e.

$$
\alpha u(x)+\Delta u(x)=\psi(x), \quad-\pi \leq x \leq \pi, \quad u(-\pi)=u(\pi), \quad 0<\alpha \leq 1,
$$

where Δ is the Laplacian. After discretization with the spectral method we get

$$
B=\tilde{\Omega}^{H} \Lambda \tilde{\Omega}, \quad \tilde{\Omega}^{H} \tilde{\Omega}=I,
$$

where Λ is a diagonal matrix. We suppose that n is an even integer. The diagonal of Λ is

$$
\left[\alpha, \alpha, \alpha+1, \alpha+1, \ldots, \alpha+(k-1)^{2}, \alpha+(k-1)^{2}, \alpha+k^{2}, \alpha+k^{2}\right],
$$

with $k=n / 2-1$. The unitary matrix $\tilde{\Omega}$ is such that $\tilde{\Omega}=P \Omega P^{T}$ where P is a permutation matrix, and Ω is the Fourier matrix. Show that the diagonal elements in the matrix B is

$$
B_{j, j}=\frac{2 \cdot \alpha}{n}+\frac{n^{2}-3 n+2}{12}, \quad j=1, \ldots, n .
$$

Hint. Note that the matrix $\tilde{B}=\Omega^{H}\left(P^{T} \Lambda P\right) \Omega$ is cyclic, symmetric. Find the diagonal elements of \tilde{B}. Show that \tilde{B} and B have the same diagonal elements.
Given. A permutation matrix is a matrix obtained by permuting the rows or columns of the identity matrix.
The Fourier matrix Ω has elements

$$
\Omega_{p, l}=\frac{1}{\sqrt{n}} \exp \left(i \cdot \frac{2 \pi}{n}(p-1)(l-1)\right), \quad i=\sqrt{-1}, \quad p, l=1, \ldots, n
$$

The eigenvalues of a cyclic matrix are the components of the vector

$$
\mathbf{g}=\sqrt{n} \cdot \Omega^{H} \tilde{\mathbf{b}},
$$

where $\tilde{\mathbf{b}}^{T}$ is the first row in \tilde{B}.
Remember that

$$
\sum_{l=1}^{m} l^{2}=\frac{m(m+1)(2 m+1)}{6}
$$

f) Consier the weighted Jacobi-iteration for solving $B \mathbf{y}=\mathbf{c}$, d.v.s.

$$
\mathbf{y}^{m+1}=(1-\omega) \mathbf{y}^{m}+\omega D^{-1}(E+F) \mathbf{y}^{m}+\omega D^{-1} \mathbf{c}
$$

$B=D-E-F$ where D is diagonal and E is lower triangular, and F upper triangular, and $0<\omega \leq 1$ is the relaxation parameter.
Show that the iteration can be written as

$$
\mathbf{y}^{m+1}=G_{\omega} \mathbf{y}^{m}+\omega D^{-1} \mathbf{c}
$$

and use this to show that the eigen values of G_{ω} are

$$
\mu_{j}=1-\omega \frac{12 \cdot \lambda_{j}}{n^{2}-3 n+2+24 \alpha / n}, \quad j=1, \ldots, n
$$

where λ_{j} are the eigenvalues of B, i.e.

$$
\lambda_{j}=\left\{\begin{array}{llll}
\alpha+\left(\frac{j}{2}-1\right)^{2}, & \text { if } j & \text { is even } \\
\alpha+\left(\frac{j+1}{2}-1\right)^{2}, & \text { if } j & \text { is odd }
\end{array}\right.
$$

g) Investigate the smoothing properties of weighted Jacobi. Express the initial error $\mathbf{e}^{0}=\mathbf{y}-\mathbf{y}^{0}$ as

$$
\mathbf{e}^{0}=\sum_{j=1}^{n} f_{j} w_{j}
$$

where w_{j} are the columns of the matrix $\tilde{\Omega}$. Find the corresponding formula for the error $\mathbf{e}^{m}=\mathbf{y}-\mathbf{y}^{m}$ by using the coefficients f_{j} and the eigenvalues and eigenvectors of G_{ω}. Determine ω which yields the best damping of the high frequency error modes from the condition $-\mu_{n / 2}=\mu_{n}$.

Problem 2

We shall consider sensitivity with respect to rounding error in the system $A X C=$ B where A is a real $n \times n$ invertible matrix, X is a real $n \times p$ matrix, C is a real $p \times p$ invertible matrix and B is an $n \times p$ matrix, with $n \geq p$. Consider the perturbed system

$$
(A+\varepsilon \Delta A) X(\varepsilon)(C+\varepsilon \Delta C)=B+\varepsilon \Delta B
$$

Find an upper bound for the relative error,

$$
\frac{\|X(\varepsilon)-X\|_{2}}{\|X\|_{2}}
$$

by using the relative error in input data, A, B og C and the condition numbers of A and C.

Problem 3

Consider the Arnoldi algorithms for computing an orthonormal basis of the Krylov subspace

$$
K_{m}\left(A, \mathbf{u}_{0}\right)=\operatorname{span}\left\{\mathbf{u}_{0}, A \mathbf{u}_{0}, \ldots, A^{m-1} \mathbf{u}_{0}\right\}
$$

where A is an $n \times n$ matrix and $\mathbf{u}_{0} \in \mathbf{R}^{n}$. The eigenvalues of the Arnoldi upper Hessenberg matrix, $V_{m}^{T} A V_{m}=H_{m}$, can be computed efficiently for instance by using a shifted $Q R$ iteration algorithm. Explain why. Suppose that ν_{k} is an eigenvalue of H_{m} and $\mathbf{y}_{k} \in \mathbf{R}^{m}$ is the corresponding normalized eigenvector. Consider ν_{k} as an approximation to an eigenvalue of A, and $V_{m} \mathbf{y}_{k}$ as an approximation to the corresponding eigenvector. Find an error bound for

$$
\left\|A V_{m} \mathbf{y}_{k}-\nu_{k} V_{m} \mathbf{y}_{k}\right\|_{2} .
$$

Use known properties of the Arnoldi algorithm for this purpose.

