EXAM IN NUMERICAL LINEAR ALGEBRA (TMA4205)

Friday December 5, 2008

Time: 09:00-13:00
Aids: Category A, All printed and hand written aids allowed. All calculators allowed.

Problem 1 The partial differential equation

$$
-u_{x x}+c u=f, \quad c \geq 0
$$

with homogeneous Dirichlet boundary conditions, yields after discretizing with centered differences, a linear system of the form $A u=b$ where $A=\operatorname{tridiag}(-1,2+\gamma,-1), A \in \mathbb{R}^{m \times m}$, $\gamma=c /(m+1)^{2}$. We find that A has eigenvalues

$$
\lambda_{k}=\gamma+4 \sin ^{2}\left(\frac{k \pi}{2(m+1)}\right), \quad k=1, \ldots, m
$$

and corresponding eigenvectors

$$
w_{k}=\left[\begin{array}{c}
\sin \left(\frac{k \pi}{m+1}\right) \\
\sin \left(\frac{2 k \pi}{m+1}\right) \\
\vdots \\
\sin \left(\frac{m k \pi}{m+1}\right)
\end{array}\right] .
$$

a) Formulate the weighted Jacobi method with relaxation parameter ω for this linear system, and show that the iteration can be written in the form

$$
u^{(q+1)}=G_{\omega} u^{(q)}+\frac{\omega}{2+\gamma} b \quad \text { where } \quad G_{\omega}=I-\frac{\omega}{2+\gamma} A,
$$

and that the iteration matrix G_{ω} has eigenvalues

$$
\mu_{k}=1-\frac{\omega}{2+\gamma}\left(\gamma+4 \sin ^{2}\left(\frac{k \pi}{2(m+1)}\right)\right), k=1, \ldots, m
$$

and the same eigenvectors as A
b) The error after q iterations with weighted Jacobi on this system can be written as

$$
e^{(q)}=G_{\omega}^{q} e^{(0)}=\sum_{k=1}^{m} \rho_{k} \mu_{k}^{q} w_{k},
$$

where

$$
e^{(0)}=\sum_{k=1}^{m} \rho_{k} w_{k}
$$

is the initial error $e^{(0)}$ expressed in terms of the eigenvectors w_{k}.
Determine the (optimal) value $\omega^{\text {opt }}$ of ω from which the best damping occurs of the upper half of the spectrum of the error, i.e. find

$$
\omega^{\mathrm{opt}}=\arg \min _{\omega} \max _{k>\frac{m+1}{2}}\left|\mu_{k}\right| .
$$

Verify that you get back to the known $\omega^{\text {opt }}=2 / 3$ when $\gamma=0$. What happens when γ tends to infinity?

Problem 2

a) Describe briefly the idea behind the projection methods for solving linear systems $A x=b$. Use approximately 4-5 lines.

Assume in the rest of this problem that $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, $b \in \mathbb{R}^{n}$ is a given right hand side, and $x=A^{-1} b$. We let $r_{k}=b-A x_{k}$ og $e_{k}=x-x_{k}=A^{-1} r_{k}$, for $k \geq 0$ and assume that x_{0} is a given vector.
b) Let us use as approximation space $\mathcal{K}=\operatorname{span}\{v\}$ and constraint space $\mathcal{L}=\mathcal{K}$. Let x_{1} be the result of one step with the projection method. Show that

$$
\left\langle A e_{1}, e_{1}\right\rangle=\left\langle A e_{0}, e_{0}\right\rangle-\left\langle r_{0}, v\right\rangle^{2} /\langle A v, v\rangle .
$$

c) The method from the previous question says nothing about how the new search direction v is chosen in each iteration. Let us therefore introduce the following principle: Choose v_{k} such that $\left\langle v_{k}, r_{k}\right\rangle=\left\|r_{k}\right\|_{1}$, that is, let the components in v_{k} be 1 and -1 , negative (-1) if the corresponding component in r_{k} is negative, and positive $(+1)$ if the r_{k} component is ≥ 0. Show that

$$
\left\|e_{k+1}\right\|_{A} \leq\left(1-\frac{1}{n \kappa(A)}\right)^{1 / 2}\left\|e_{k}\right\|_{A}
$$

Here $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$ while $\|w\|_{A}=\langle A w, w\rangle^{1 / 2}$.

Problem 3 Let the matrix A be given as

$$
A=\left[\begin{array}{ccc}
8 & 1 & 0 \\
1 & 4 & \varepsilon \\
0 & \varepsilon & 1
\end{array}\right], \quad|\varepsilon| \leq 1
$$

a) Give an estimate for the eigenvalues of A by using the Gerschgorin theorem. In particular, what can one say about the smallest eigenvalue? Make a sketch to illustrate.
b) Show for instance by using a suitable diagonal similarity transformation the sharper estimate $\left|\lambda_{3}-1\right| \leq \varepsilon^{2}$ for the smallest eigenvalue of A.
c) For $\varepsilon=0.1$ one has found Q and R such that $A-I=Q R$ where

$$
Q=\left[\begin{array}{rrr}
-0.9899 & 0.1413 & 0.0050 \\
-0.1414 & -0.9893 & -0.0350 \\
0 & -0.0353 & 0.9994
\end{array}\right], \quad R=\left[\begin{array}{rrr}
-7.0711 & -1.4142 & -0.0141 \\
0 & -2.8302 & -0.0989 \\
0 & 0 & -0.0035
\end{array}\right] .
$$

Find an approximation to the smallest eigenvalue of A from this.

Problem 4

a) Find the singular value decomposition of the matrix

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right] .
$$

b) The matrix in the previous question is a special case of a matrix $B \in \mathbb{R}^{(n+1) \times n}$ where $B_{k, k}=1, B_{k+1, k}=-1$ for $k=1, \ldots, n$ and where all other elements of B are zero. Determine the singular value decomposition of B.

