EXAM IN NUMERICAL LINEAR ALGEBRA (TMA4205)

Friday December 5, 2008

Time: 09:00-13:00
Aids: Category A, All printed and hand written aids allowed. All calculators allowed.

Problem 1 The partial differential equation

$$
-u_{x x}+c u=f, \quad c \geq 0
$$

with homogeneous Dirichlet boundary conditions, yields after discretizing with centered differences, a linear system of the form $A u=b$ where $A=\operatorname{tridiag}(-1,2+\gamma,-1), A \in \mathbb{R}^{m \times m}$, $\gamma=c /(m+1)^{2}$. We find that A has eigenvalues

$$
\lambda_{k}=\gamma+4 \sin ^{2}\left(\frac{k \pi}{2(m+1)}\right), \quad k=1, \ldots, m
$$

and corresponding eigenvectors

$$
w_{k}=\left[\begin{array}{c}
\sin \left(\frac{k \pi}{m+1}\right) \\
\sin \left(\frac{2 k \pi}{m+1}\right) \\
\vdots \\
\sin \left(\frac{m k \pi}{m+1}\right)
\end{array}\right] .
$$

a) Formulate the weighted Jacobi method with relaxation parameter ω for this linear system, and show that the iteration can be written in the form

$$
u^{(q+1)}=G_{\omega} u^{(q)}+\frac{\omega}{2+\gamma} b \quad \text { where } \quad G_{\omega}=I-\frac{\omega}{2+\gamma} A,
$$

and that the iteration matrix G_{ω} has eigenvalues

$$
\mu_{k}=1-\frac{\omega}{2+\gamma}\left(\gamma+4 \sin ^{2}\left(\frac{k \pi}{2(m+1)}\right)\right), k=1, \ldots, m
$$

and the same eigenvectors as A
Answer: Standard Jacobi results from the splitting $A=M-N=2+\gamma I-((2+\gamma) I-A)$ and thus

$$
(2+\gamma) u^{(q+1)}=((2+\gamma) I-A) u^{(q)}+b
$$

G_{ω} is obtained by dividing by $(2+\gamma)$ on each side. Eigenvalues and eigenvectors are found from

$$
G_{\omega} w_{k}=\left(I-\frac{\omega}{2+\gamma} A\right) w_{k}=\left(1-\frac{\omega}{2+\gamma} \lambda_{k}\right) w_{k}
$$

where we insert the given λ_{k}.
b) The error after q iterations with weighted Jacobi on this system can be written as

$$
e^{(q)}=G_{\omega}^{q} e^{(0)}=\sum_{k=1}^{m} \rho_{k} \mu_{k}^{q} w_{k},
$$

where

$$
e^{(0)}=\sum_{k=1}^{m} \rho_{k} w_{k}
$$

is the initial error $e^{(0)}$ expressed in terms of the eigenvectors w_{k}.
Determine the (optimal) value $\omega^{\text {opt }}$ of ω from which the best damping occurs of the upper half of the spectrum of the error, i.e. find

$$
\omega^{\mathrm{opt}}=\arg \min _{\omega} \max _{k>\frac{m+1}{2}}\left|\mu_{k}\right|
$$

Verify that you get back to the known $\omega^{\text {opt }}=2 / 3$ when $\gamma=0$. What happens when γ tends to infinity?

Answer: We introduce the variable $\theta=k /(m+1)$, and find that

$$
\mu(\theta)=1-\frac{\omega}{2+\gamma}\left(\gamma+4 \sin ^{2}\left(\frac{\pi}{2} \theta\right)\right)
$$

$\mu(\theta)$ is a decreasing function of θ, so min and max are attained in the end points of the closed interval $\theta \in[1 / 2,1]$. We conclude that the optimal ω is obtained when $\mu(1 / 2)=-\mu(1)$, that is

$$
1-\frac{\omega(\gamma+2)}{\gamma+2}=-\left(1-\frac{\omega(\gamma+4)}{\gamma+2}\right)
$$

which yields

$$
\omega^{\mathrm{opt}}=\frac{\gamma+2}{\gamma+3}
$$

so $\gamma=0$ leads to the well-known result $\omega^{\text {opt }}=2 / 3$. When γ increases, $\omega^{\text {opt }}$ tends to the value 1 .

Problem 2

a) Describe briefly the idea behind the projection methods for solving linear systems $A x=b$. Use approximately 4-5 lines.

Answer: The idea is to define an approximation space \mathcal{K} and a constraint space \mathcal{L} of the same dimension, and thereafter seek, for a given x_{0}, a vector x such that

$$
x-x_{0} \in \mathcal{K}, \quad b-A x \perp \mathcal{L}
$$

Assume in the rest of this problem that $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, $b \in \mathbb{R}^{n}$ is a given right hand side, and $x=A^{-1} b$. We let $r_{k}=b-A x_{k}$ og $e_{k}=x-x_{k}=A^{-1} r_{k}$, for $k \geq 0$ and assume that x_{0} is a given vector.
b) Let us use as approximation space $\mathcal{K}=\operatorname{span}\{v\}$ and constraint space $\mathcal{L}=\mathcal{K}$. Let x_{1} be the result of one step with the projection method. Show that

$$
\left\langle A e_{1}, e_{1}\right\rangle=\left\langle A e_{0}, e_{0}\right\rangle-\left\langle r_{0}, v\right\rangle^{2} /\langle A v, v\rangle .
$$

Answer: The method is

$$
x_{1}=x_{0}+\frac{\left\langle r_{0}, v\right\rangle}{\langle A v, v\rangle} v \quad \Rightarrow \quad e_{1}=e_{0}-\frac{\left\langle r_{0}, v\right\rangle}{\langle A v, v\rangle} v
$$

Since $r_{1} \perp v$

$$
\left\langle A e_{1}, e_{1}\right\rangle=\left\langle r_{1}, e_{1}\right\rangle=\left\langle r_{1}, e_{0}\right\rangle=\left\langle A e_{0}, e_{0}\right\rangle-\frac{\left\langle r_{0}, v\right\rangle}{\langle A v, v\rangle}\left\langle A v, e_{0}\right\rangle=\left\langle A e_{0}, e_{0}\right\rangle-\frac{\left\langle r_{0}, v\right\rangle^{2}}{\langle A v, v\rangle}
$$

In the last step we have used that A is symmetric.
c) The method from the previous question says nothing about how the new search direction v is chosen in each iteration. Let us therefore introduce the following principle: Choose v_{k} such that $\left\langle v_{k}, r_{k}\right\rangle=\left\|r_{k}\right\|_{1}$, that is, let the components in v_{k} be 1 and -1 , negative (-1) if the corresponding component in r_{k} is negative, and positive $(+1)$ if the r_{k} component is ≥ 0. Show that

$$
\left\|e_{k+1}\right\|_{A} \leq\left(1-\frac{1}{n \kappa(A)}\right)^{1 / 2}\left\|e_{k}\right\|_{A}
$$

Here $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$ while $\|w\|_{A}=\langle A w, w\rangle^{1 / 2}$.
Answer: Rewriting the result from the previous question yields

$$
\left\|e_{k+1}\right\|_{A}^{2}=\left(1-\frac{\left\langle r_{k}, v_{k}\right\rangle^{2}}{\left\langle A v_{k}, v_{k}\right\rangle\left\langle A e_{k}, e_{k}\right\rangle}\right)\left\|e_{k}\right\|_{A}^{2}
$$

Now use $\left\langle r_{k}, v_{k}\right\rangle=\left\|r_{k}\right\|_{1} \geq\left\|r_{k}\right\|_{2}$, and that

$$
\left\langle A v_{k}, v_{k}\right\rangle\left\langle A e_{k}, e_{k}\right\rangle=\left\langle A v_{k}, v_{k}\right\rangle\left\langle r_{k}, A^{-1} r_{k}\right\rangle \leq\|A\|_{2}\left\|A^{-1}\right\|_{2}\left\|v_{k}\right\|_{2}^{2}\left\|r_{k}\right\|_{2}^{2}=n \kappa(A)\left\|r_{0}\right\|_{2}^{2}
$$

We thereby get

$$
\frac{\left\langle r_{k}, v_{k}\right\rangle^{2}}{\left\langle A v_{k}, v_{k}\right\rangle\left\langle A e_{k}, e_{k}\right\rangle} \geq \frac{\left\|r_{k}\right\|_{2}^{2}}{n \kappa(A)\left\|r_{k}\right\|_{2}^{2}}=\frac{1}{n \kappa(A)}
$$

and as desired we obtain

$$
\left\|e_{k+1}\right\|_{A}^{2} \leq\left(1-\frac{1}{n \kappa(A)}\right)\left\|e_{k}\right\|_{A}^{2}
$$

Problem 3 Let the matrix A be given as

$$
A=\left[\begin{array}{ccc}
8 & 1 & 0 \\
1 & 4 & \varepsilon \\
0 & \varepsilon & 1
\end{array}\right], \quad|\varepsilon| \leq 1
$$

a) Give an estimate for the eigenvalues of A by using the Gerschgorin theorem. In particular, what can one say about the smallest eigenvalue? Make a sketch to illustrate.
Answer: All three Gerschgorin circles are disjoint, and the matrix is symmetric so the eigenvalues are real. We find that the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ satisfy

$$
7 \leq \lambda_{1} \leq 9, \quad 3-\varepsilon \leq \lambda_{2} \leq 5+\varepsilon, \quad 1-\varepsilon \leq \lambda_{3} \leq 1+\varepsilon
$$

In particular, the smallest eigenvalue is between $1-\varepsilon$ and $1+\varepsilon$.
b) Show for instance by using a suitable diagonal similarity transformation the sharper estimate $\left|\lambda_{3}-1\right| \leq \varepsilon^{2}$ for the smallest eigenvalue of A.

Answer: We compute the similarity transformation with $T=\operatorname{diag}(1,1, \varepsilon)$ and

$$
T A T^{-1}=\left[\begin{array}{ccc}
8 & 1 & 0 \\
1 & 4 & 1 \\
0 & \varepsilon^{2} & 1
\end{array}\right]
$$

and the third Gerschgorin disk is still disjoint from the others whenever $|\varepsilon| \leq 1$, and therefore contains an eigenvalue.
c) For $\varepsilon=0.1$ one has found Q and R such that $A-I=Q R$ where

$$
Q=\left[\begin{array}{rrr}
-0.9899 & 0.1413 & 0.0050 \\
-0.1414 & -0.9893 & -0.0350 \\
0 & -0.0353 & 0.9994
\end{array}\right], \quad R=\left[\begin{array}{rrr}
-7.0711 & -1.4142 & -0.0141 \\
0 & -2.8302 & -0.0989 \\
0 & 0 & -0.0035
\end{array}\right] .
$$

Find an approximation to the smallest eigenvalue of A from this.
Answer: We can easily perform one iteration with the shifted $Q R$ method, we just need to determine the (3,3) element in $A_{1}=R Q+I$ which becomes

$$
1+(-0.0035) \cdot 0.9994=0.9965,
$$

The answer is correct in all 4 digits.

Problem 4

a) Find the singular value decomposition of the matrix

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right] .
$$

Answer:

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{-2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
\end{array}\right] \cdot\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]^{T}
$$

b) The matrix in the previous question is a special case of a matrix $B \in \mathbb{R}^{(n+1) \times n}$ where $B_{k, k}=1, B_{k+1, k}=-1$ for $k=1, \ldots, n$ and where all other elements of B are zero. Determine the singular value decomposition of B.

Answer: We must find U, V, Σ such that $B=U \Sigma V^{T}$. Here we find that $B^{T} B=\operatorname{tridiag}(-1,2,-1)$ for which we know the eigenvalues:

$$
\sigma_{k}^{2}=4 \sin ^{2}\left(\frac{k \pi}{2(n+1)}\right) \Rightarrow \sigma_{k}=2 \sin \left(\frac{k \pi}{2(n+1)}\right), \quad k=1, \ldots, n
$$

The matrix V has the eigenvectors of $B^{T} B$ as columns, they are also known, but we need to scale them such that the Euclidian norm is 1 .

$$
\left\|w_{k}\right\|_{2}^{2}=\sum_{j=1}^{n} \sin ^{2}\left(\frac{j k \pi}{2(n+1)}\right)=\frac{n+1}{2}
$$

So column k in V is

$$
v_{k}=\sqrt{\frac{2}{n+1}}\left[\begin{array}{c}
\sin \left(\frac{k \pi}{n+1}\right) \\
\sin \left(\frac{2 k \pi}{n+1}\right) \\
\vdots \\
\sin \left(\frac{n k \pi}{n+1}\right)
\end{array}\right] .
$$

To find column k in U, we set $u_{k}=\frac{1}{\sigma_{k}} B v_{k}$. Component ℓ of u_{k} is therefore (at the moment we ignore the factor $\sqrt{2 /(n+1))}$

$$
\frac{1}{\sigma_{k}}\left(\sin \left(\frac{k \ell \pi}{n+1}\right)-\sin \left(\frac{k(\ell-1) \pi}{n+1}\right)\right)
$$

Here we could have called it a day, but it is in fact here all the fun begins. Letting

$$
\phi=\frac{k(\ell-1 / 2) \pi}{n+1}, \quad \delta=\frac{k \pi / 2}{n+1} \quad \Rightarrow \sigma_{k}=2 \sin \delta
$$

the above expression becomes

$$
\frac{1}{\sigma_{k}}(\sin (\phi+\delta)-\sin (\phi-\delta))=\cos \phi \frac{2 \sin \delta}{\sigma_{k}}=\cos \phi=\cos \left(\frac{k(\ell-1 / 2) \pi}{n+1}\right)
$$

We therefore have the following elegant expression for column k in U

$$
u_{k}=\sqrt{\frac{2}{n+1}}\left[\begin{array}{c}
\cos \left(\frac{k \cdot \frac{1}{2} \cdot \pi}{n+1}\right) \\
\cos \left(\frac{k \cdot \frac{3}{2} \cdot \pi}{n+1}\right) \\
\vdots \\
\cos \left(\frac{k \cdot\left(n+\frac{1}{2}\right) \cdot \pi}{n+1}\right)
\end{array}\right] \in \mathbb{R}^{n+1}
$$

